factor of safety
Recently Published Documents


TOTAL DOCUMENTS

564
(FIVE YEARS 172)

H-INDEX

31
(FIVE YEARS 5)

Author(s):  
Dattaraj Raikar

Abstract: Double Wishbone suspension systems are by far the best choice of suspension systems recommended for sports vehicles. It is more stable and stiffer when compared to the other suspension geometries. In this report a brief study of how a double-wishbone suspension system acts under loading conditions when traveling at high speeds is presented, also the forces acting on its components are analysed, and post-processed results are discussed. The geometry of the whole suspension is designed on SolidWorks and analysis is performed on Ansys software. Further the results from the analysis are studied based on material selection and various analysis methods. Finally, the proposed suspension system is concluded safe to use when the values of Equivalent stress, Total Deformation, and Factor of Safety were measured and under threshold limits. Keywords: double wishbone suspension, static structural, suspension system, analysis, deformation, Ansys, stress analysis, FOS, FEA, structural analysis.


2022 ◽  
Author(s):  
Sahila Beegum ◽  
P J Jainet ◽  
Dawn Emil ◽  
K P Sudheer ◽  
Saurav Das

Abstract Soil pore water pressure analysis is crucial for understanding landslide initiation and prediction. However, field-scale transient pore water pressure measurements are complex. This study investigates the integrated application of simulation models (HYDRUS-2D/3D and GeoStudio–Slope/W) to analyze pore water pressure-induced landslides. The proposed methodology is illustrated and validated using a case study (landslide in India, 2018). Model simulated pore water pressure was correlated with the stability of hillslope, and simulation results were found to be co-aligned with the actual landslide that occurred in 2018. Simulations were carried out for natural and modified hill slope geometry in the study area. The volume of water in the hill slope, temporal and spatial evolution of pore water pressure, and factor of safety were analysed. Results indicated higher stability in natural hillslope (factor of safety of 1.243) compared to modified hill slope (factor of safety of 0.946) despite a higher pore water pressure in the natural hillslope. The study demonstrates the integrated applicability of the physics-based models in analyzing the stability of hill slopes under varying pore water pressure and hill slope geometry and its accuracy in predicting future landslides.


Author(s):  
Lafridha Alyazahari ◽  
Luthfi Amri Wicaksono ◽  
Dwi Nurtanto

A Landslide is the movement of soil mass or rock constituents down the slope due to disturbance of soil stability. One of the factors that affect soil stability is the rainy season as happened in Sumberwuluh Village, Candipuro District, Lumajang Regency. The alternative used to stabilize the slope is by changing the slope geometry, then adding geoframe reinforcement. This study aims to determine the value of the factor of safety (SF) of unreinforced slopes, after changing the slope geometry, and after being given geoframe reinforcement. The method used in analyzing slope stability is the Ordinary/Fellenius method. The results of the calculation of slope stability without reinforcement using the Rocscience Slide software obtained a SF of 0.719, while the manual calculation obtained a SF of 0.7191. The two values ​​of the safety factor are less than 1.25, which means that landslides often occur. The results of the calculation of slope stability after changing the geometry of the slopes obtained a SF of 0.828 where the value is less than 1.25 which means that landslides often occur. The slopes that have been changed geometry are added with geoframe reinforcement. The results of the calculation of slope stability using geoframe reinforcement obtained a SF of 1.315 where the value is more than 1.25 which means that landslides are rare or slope in a safe condition.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Chukwuka Ifediniru ◽  
Nnamdi E. Ekeocha

AbstractSoils with poor shear strength and high compressibility underlie the wetlands of southern Nigeria. They are susceptible to intolerable settlements and account for greater than 60% of the soils in the region. While requiring embankments for any infrastructure construction, these weak soils pose significant threat to the construction and service life of highway pavements in southeastern Nigeria. Therefore, this research investigates shear strength improvement of a highway embankment’s weak subgrade soil after mass stabilization of soil with 6 and 10% Portland cement. The factor of safety against shear failure of the embankment was analyzed for un-stabilized subgrade and then cement-stabilized subgrade. The analysis was carried out for embankment heights of 4, 5, 6 and 7 m using the limit equilibrium method. Thick soft clayey silt with Cu range of 9 to 15 kPa underlay the embankment, upon improvement, the Cu of 154 and 208 kPa was obtained for 6 and 10% stabilization respectively. The FoS for the embankment on Un-stabilized soil ranged from 0.88 for a 7 m embankment to 1.2 for a 4 m embankment. The FoS after mass stabilization of 1 to 5 m soil ranged between 1.77 and 5.22 for the different embankment heights. Stability was better improved as depth of mass stabilization and cement content increased. A linear relationship was observed to exist between the cement content, strength of the improved soils, stabilization depth and the factor of safety.


2022 ◽  
pp. 272-295
Author(s):  
Omar Javaid

A culture of fear, control, and meaninglessness can effectively kill the entrepreneurial spirit within an organization. This chapter will explore why such a culture typically takes root and how it is deadly for the organization's entrepreneurial orientation. The chapter is based on an interdisciplinary reflective analysis done by exploring disciplines including depth psychology, neuroscience, positive psychology, and organizational behavior. The chapter argues from the perspectives of these disciplines that it is perhaps the factor of safety, risk-taking, collaboration, and meaningfulness if present in organizational culture that will eventually cultivate the spirit of entrepreneurship in an organization. While discussing these factors, the chapter also explains how seemingly irrational forces of the unconscious mind keep the leadership from adopting a behavior which is fundamentally important in fostering a culture where entrepreneurial behavior takes root. The chapter also explains how these psychic forces can be turned around to cultivate an entrepreneurial culture in an organization.


2021 ◽  
Vol 21 (12) ◽  
pp. 3767-3788
Author(s):  
Vipin Kumar ◽  
Léna Cauchie ◽  
Anne-Sophie Mreyen ◽  
Mihai Micu ◽  
Hans-Balder Havenith

Abstract. There have been many studies exploring rainfall-induced slope failures in earthquake-affected terrain. However, studies evaluating the potential effects of both landslide-triggering factors – rainfall and earthquakes – have been infrequent despite rising global landslide mortality risk. The SE Carpathians, which have been subjected to many large historical earthquakes and changing climate thus resulting in frequent landslides, comprise one such region that has been little explored in this context. Therefore, a massive (∼9.1 Mm2) landslide, situated along the river Bâsca Rozilei, in the Vrancea seismic zone, SE Carpathians, is chosen as a case study area to achieve the aforesaid objective (evaluating the effects of both rainfall and earthquakes on landslides) using slope stability evaluation and runout simulation. The present state of the slope reveals a factor of safety in a range of 1.17–1.32 with a static condition displacement of 0.4–4 m that reaches up to 8–60 m under dynamic (earthquake) conditions. The groundwater (GW) effect further decreases the factor of safety and increases the displacement. Ground motion amplification enhances the possibility of slope surface deformation and displacements. The debris flow prediction, implying the excessive rainfall effect, reveals a flow having a 9.0–26.0 m height and 2.1–3.0 m s−1 velocity along the river channel. The predicted extent of potential debris flow is found to follow the trails possibly created by previous debris flow and/or slide events.


2021 ◽  
Vol 294 ◽  
pp. 106346
Author(s):  
Mingdong Wei ◽  
Feng Dai ◽  
Yinlin Ji ◽  
Wei Wu

2021 ◽  
Author(s):  
Amanuel Zewdu

Abstract Safety against seepage is one in all the primary important steps for checking the possibility of failure of embankment dam and the stability of an embankment dam depends on its geometry, its components, materials, properties of every component, and therefore the forces to which it's subjected. This paper presented seepage and slope stability analysis against Ribb dam safety using finite element-based PLAXIS software, and so the result was compared with different standards. PLAXIS is alternative software that will be used for evaluating the protection of embankment dams due to seepage conditions. The simulated results showed the common rate of flow of seepage through the body of the dam at normal pool level was equal to 5.05*10−6 m3/s/m and through the foundation of the dam was 3.00*10−6 m3/s/m. According to Look (2014) recommendation, the seepage results within the tolerable limit. The results of the factor of safety were considered too different loading conditions. The factor of safety results during the end of construction for both static and dynamic stability analysis were 1.3063 and 1.2226, respectively. For steady-state conditions, the factor of safety obtained for static stability analysis was 1.2604, and also the dynamic analysis 1.1803. The rapid drawdown condition is analyzed with a normal pool level of 1940 m lowered to 1900 m or rapidly reduced 57% of the reservoir water. The analysis results showed that the factor of safety for the static, and dynamic analyses were 1.2021 and 1.0662, respectively. Using different recommended design standards: United States Army Corps of Engineers (USACE), British dam society (BDS), and Canadian dam association (CDA) the slope stability analysis of the Ribb embankment dam at all critical loading conditions is safe.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Syed Raghib Abbas Shah ◽  
Aneel Kumar ◽  
Tauha Hussain Ali ◽  
Muhammad Rehan Hakro ◽  
Mohammad Achar Zardari

Abstract The majority of historical heritage structures of Makli, Thatta require rehabilitation. As the Tomb of Jam Nizam-al-Din Samoo is near the slope’s edge, the settlement increased due to slope degradation. This study aims to investigate the effect of structural elements such as secant pile and structural nails on the settlement of Tomb. From this study, it was observed that with the installation of secant piles on the slope, Tomb’s settlement can be reduced considerably; moreover, the anchors did not have an appreciable role in the settlement. The secant pile of 12 m sufficient to reduce settlement. This will be economical and easy approach as compare to the retaining wall. The Factor of safety (FOS) reduced from 1.36 to 1.10 with increase of slope from 45 to 35. The FOS of slope also increased with the installation of nails from east side of slope. The will reduce the chances of slope failure and consequently the tilting/collapse of Tomb.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Panyabot Kaothon ◽  
Kean Thai Chhun ◽  
Chan-Young Yune

AbstractIn conventional design of soil-nailed slope, the nail parameters such as nail spacing (1–2 m), and nail inclination (10º–20º) have been recommended without considering any specific slope angle. Henceforth, this paper presents a numerical evaluation on the soil-nailed slope with flexible facing based on the finite element method in order to investigate the range of those two parameters with any size of nail head in various slope angles (45º, 55º, 65º, and 75º). Based on a minimum factor of safety (FSmin  =  1.5), the analysis results indicated that the suggested range of those parameters in the conventional specification was applicable in the slope angle of 45º and 55º with any sizes of nail head. Nevertheless, it was not practical for slope angle of 65º and 75º, which required the size of nail head at least 400  ×  400  ×  250 mm, with nail spacing less than or equal to 1.5 m, and nail inclination from 5º to 10º.


Sign in / Sign up

Export Citation Format

Share Document