element program
Recently Published Documents


TOTAL DOCUMENTS

736
(FIVE YEARS 71)

H-INDEX

23
(FIVE YEARS 1)

2022 ◽  
pp. e677-e725
Author(s):  
Muhsin J. Jweeg ◽  
Muhannad Al-Waily ◽  
Kadhim Kamil Resan

Author(s):  
Mohamed Gamal Aboelhassan ◽  
Mohie Eldin Shoukry ◽  
Said Mohamed Allam

Abstract The main purpose of this paper is to study analytically the behavior of slender reinforced concrete columns existing in sway and non-sway structures. The studied variables were the stiffness of the beam connected to the slender columns, the stiffness of the bracing columns, and the number of bays and stories in the structure model. The stability of slender columns was studied and the required limits for the lateral bracing were determined using a finite element program to perform buckling analysis, linear analysis, and geometric nonlinear analysis for the different frame structural models. All the results obtained in this study were compared to the available methods included in the different building codes and the methods suggested by other researchers. The results indicated that the minimum value of the bracing limit, required to restrain the slender column against the side-sway, depends on the stiffness of the connecting beams, number of stories, and number of bays. The required bracing limit decreases with increasing the beam stiffness and with increasing the number of bays. However, the required bracing limit increases with the increase of the number of stories in the structure.


Author(s):  
Krishna Ghimire ◽  
Hemchandra Chaulagain

In most of the countries, the irregular building construction is popular for fulfilling both aesthetic and functional requirements. However, the evidence of past earthquakes in Nepal and the globe demonstrated the higher level of seismic vulnerability of the buildings due to irregularities. Considering this fact, the present study highlighted the common irregularities and its effect on reinforced concrete building response. The effect of structural irregularities was studied through numerical analysis. The geometrical, mass and stiffness irregularities were created by removing bays in different floor levels and removing the columns at different sections respectively. In this study, the numerical models were created in finite element program SAP2000. The structural performance was studied using both non-linear static pushover and dynamic time history analysis. The results indicate that the level of irregularities significantly influenced the behavior of structures.


Author(s):  
Naveed Ahmad ◽  
Arifullah ◽  
Babar Ilyas ◽  
Sida Hussain

Experimental and numerical studies are presented evaluating the efficacy of a recycling technique applied to a 1:3 reduced scale damaged RC frame. The crumbled concrete at the beam-column connections was replaced with new high-strength concrete. Epoxy mortar was applied at the interface to secure bonding between the old and new concrete. Additionally, the connections were provisioned with steel haunches, applied below and above the beams. The retrofitted frame was tested under quasi-static cyclic loads. The lateral resistance-displacement hysteretic response of the tested frame was obtained to quantify hysteretic damping, derive the lateral resistance-displacement capacity curve, and develop performance levels. The technique improved the response of the frame; exhibiting an increase in the lateral stiffness, resistance and post-yield stiffness of the frame in comparison to the undamaged original frame. This good behaviour is attributed to the steel haunches installed at connections. A representative numerical model was calibrated in the finite element program SeismoStruct. A set of spectrum compatible ground motions were input to the numerical model for response history analysis. The story drift demands were computed for both the design basis and maximum considered earthquakes. Moreover, the technique was extended to a five-story frame, which was evaluated through nonlinear static pushover and response history analyses. Overstrength factor WR = 4.0 is proposed to facilitate analysis and preliminary design of steel haunches and anchors for retrofitting the low-/mid-rise RC frames.


2021 ◽  
Vol 18 (3) ◽  
pp. 219-228
Author(s):  
J.O. Akinyele ◽  
U.T. Igba ◽  
F.M. Alayaki ◽  
S.I. Kuye

Corrosion of steel and spalling of concrete in reinforced concrete elements have become a common occurrence in structures that are built around marine environment. This research investigated the effect of chloride on the steel in reinforced concrete beams. Mechanical tests such as; compressive, flexural and bond strengths were done on replicate concrete elements which were cast and buried for a maximum of one year in the Lagos lagoon. Twenty-four number of 150 mm x 150 mm x 600 mm sized reinforced concrete beams were cast for the flexural strength test, while forty-eight concrete cubes were cast for both compressive and bond strength tests, samples were cured in both lagoon and fresh water (The fresh water is for the control). A finite element program, ANSYS was used to model the deformation (deflection) of the steel reinforcement in the beams. Results showed a general reduction in compressive, flexural and bond strengths for the concrete samples buried in the lagoon, while those buried in freshwater showed an increase in strength as the concrete ages. The modelled results of the reinforcement showed a one-year deformation rate (r = 0.0181) in the steel of concrete buried in lagoon water. This value was used to estimate the future and past deformation values of these reinforcements due to chloride attack.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Saiwei Cheng ◽  
Xiaojie Li ◽  
Yang Wang ◽  
Yuxin Wang ◽  
Honghao Yan

In recent years, with the improvement of environmental protection requirements year by year and the continuous expansion of explosive working scale, higher standards have been put forward for explosive working. It is hoped that the sphere of influence of the explosion can be limited to a minimal range. The explosion vessel is driven by such demand. As the explosion vessel’s key component, studying the blast-resistant door in depth is of great significance. This paper introduces a new elliptical blast-resistant door with the combined structure (EBD), mainly welded with an elliptical panel, arc support plate, and triangle support plate. The finite element program AUTODYN was used to calculate the explosion load, and LS-DYNA was used to calculate the blast-resistant door’s dynamic response. The calculation results show that the newly proposed EBD’s blast-resistance capacity is better than that of the traditional structure. To further study the factors that affect the dynamic response of the EBD, a parametric study was carried out on the EBD, mainly analyzing the influence of the vacuum degree in the explosion vessel, the number of explosives, and the diameter ratio of the EBD. The parametric calculation results show that reducing the vacuum degree in the explosion vessel and the number of explosives during explosion working can improve the blast-resistance capacity of the EBD. Based on the analysis of the dynamic response of four kinds of EBD with different diameter ratios under 0.2 atm explosion load, the optimal diameter ratio of the EBD is given.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7130
Author(s):  
Marcel Torrent ◽  
Balduí Blanqué

This work shows the results obtained from studying the influence of equivalent circuit resistances on three-phase induction motors. The stator resistance, rotor resistance, and iron losses resistance affect the different motor operating variables (output power, current, speed, power factor, starting ratios, and maximum torque). These influences have been quantified, paying particular attention to the losses affected and their impact on efficiency. The study carried out does not apply optimization techniques. It evaluates the different influences of the equivalent circuit’s different resistances on its operation by evaluating applicable constructive modifications concerning available motors. The work has been limited to three-phase induction motors up to 50 kW and low voltage, with the nominal powers of the selected motors being 0.25 kW, 1.5 kW, 7.5 kW, 22 kW, and 45 kW. The tools used to carry out the study are analyzing the equivalent circuit and the simulation of the electromagnetic structure using a finite-element program. The variations proposed in each resistance for all the motors studied is not purely theoretical, as it is based on applying feasible constructive modifications, appropriately analyzed and simulated. These modifications are the variation of the conductor diameter in the stator coils, the change of the section of the rotor cage, and the selection of different ferromagnetic steel types.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhangxin Guo ◽  
Zhiqiang Yu ◽  
Shiyi Wei ◽  
Guoliang Qi ◽  
Yongcun Li ◽  
...  

PurposeThe cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.Design/methodology/approachFinite element method is employed in this work.FindingsThe simulated results match the experimental results well, which demonstrates the finite element analysis models are reliable. Compared with the one- and two-dimensional finite element analysis, temperature and degree of cure can be calculated at any point within composite structures in the present simulation analysis. The cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.Originality/valueA coupled thermokinetic simulation of the liquid composite molding process based on a three-dimensional finite element method is presented. The cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.


2021 ◽  
Vol 4 (3) ◽  
pp. 151-162
Author(s):  
Muhamad Zulfakar ◽  
Ali İhsan Karakaş

In this study the time history analyses are carried out three dimensionally for a simple five-story concrete structure seismically isolated incorporating triple friction pendulum bearings with different sliding surface properties with the help of the ABAQUS finite element program. The altering friction surface properties are friction coefficient and radius of curvature. The performances of the various isolators are compared with each other as well as with those of a fixed based structure. For this purpose, maximum relative story displacements, story accelerations and column base shear forces are investigated as seismic reactions. According to the analysis results it can be stated that the seismic reactions of isolated structures are significantly reduced when compared to those of the fixed supported structure. Additionally, when triple friction pendulum bearing isolators with different friction coefficients and friction surface radii are compared, it can be observed that increasing the friction coefficient increases the reactions of the structure while increasing the friction surface radii decreases the reactions


2021 ◽  
Author(s):  
Laura Dover Wandner ◽  
Anthony F. Domenichiello ◽  
Jennifer Beierlein ◽  
Leah Pogorzala ◽  
Guadalupe Aquino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document