finite element program
Recently Published Documents


TOTAL DOCUMENTS

871
(FIVE YEARS 97)

H-INDEX

27
(FIVE YEARS 3)

2022 ◽  
pp. e677-e725
Author(s):  
Muhsin J. Jweeg ◽  
Muhannad Al-Waily ◽  
Kadhim Kamil Resan

Author(s):  
Mohamed Gamal Aboelhassan ◽  
Mohie Eldin Shoukry ◽  
Said Mohamed Allam

Abstract The main purpose of this paper is to study analytically the behavior of slender reinforced concrete columns existing in sway and non-sway structures. The studied variables were the stiffness of the beam connected to the slender columns, the stiffness of the bracing columns, and the number of bays and stories in the structure model. The stability of slender columns was studied and the required limits for the lateral bracing were determined using a finite element program to perform buckling analysis, linear analysis, and geometric nonlinear analysis for the different frame structural models. All the results obtained in this study were compared to the available methods included in the different building codes and the methods suggested by other researchers. The results indicated that the minimum value of the bracing limit, required to restrain the slender column against the side-sway, depends on the stiffness of the connecting beams, number of stories, and number of bays. The required bracing limit decreases with increasing the beam stiffness and with increasing the number of bays. However, the required bracing limit increases with the increase of the number of stories in the structure.


2021 ◽  
Vol 30 (4) ◽  
Author(s):  
Kexin Zhang

To verify the effectiveness of polyurethane cement-prestressed steel wire ropes for flexural reinforcement of reinforced concrete T-girders, this paper conducts flexural test research on 12 pieces of T-girder specimens. Through the ABAQUS finite element program to build a model for numerical simulation, the results show polyurethane cement prestressed steel wire rope reinforcement can significantly increase the yield load and ultimate load of reinforced girders. Taking a girder in the test (20mm reinforcement thickness of polyurethane cement) as an example, yield load and ultimate load increased by 61.5% and 102.3% compared to unreinforced girder. The finite element model calculation results of T-girder bending reinforcement are in good agreement with the bending reinforcement test, and the error is only about 2%. For different strength concrete, the yield load increases slightly with the increase of concrete strength. For T-girders with different reinforcement ratios, the bearing capacity of strengthened girders changes significantly with the increase of longitudinal reinforcement ratio. The yield load of girders with reinforcement ratio of 1.82% and 1.35% is 29.84% and 65.85% higher than that of girders with reinforcement ratio of 0.91%. The yield deflection is 13.18% and 3.99% higher than that of girders with reinforcement ratio of 0.91%. It can be concluded that the bending reinforcement method of polyurethane cement prestressed steel wire ropes can effectively strengthen the main girder and ensure the structural safety.


Author(s):  
Krishna Ghimire ◽  
Hemchandra Chaulagain

In most of the countries, the irregular building construction is popular for fulfilling both aesthetic and functional requirements. However, the evidence of past earthquakes in Nepal and the globe demonstrated the higher level of seismic vulnerability of the buildings due to irregularities. Considering this fact, the present study highlighted the common irregularities and its effect on reinforced concrete building response. The effect of structural irregularities was studied through numerical analysis. The geometrical, mass and stiffness irregularities were created by removing bays in different floor levels and removing the columns at different sections respectively. In this study, the numerical models were created in finite element program SAP2000. The structural performance was studied using both non-linear static pushover and dynamic time history analysis. The results indicate that the level of irregularities significantly influenced the behavior of structures.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2215
Author(s):  
Yingji Bao ◽  
Binsong Jiang

Before the excavation of underground engineering, joints, fissures, and voids already exist in the rock—that is, there are defects in the rock. Due to the existence of these defects, the rock produces plastic deformation, which can lead to incompatible deformation. Therefore, the classic continuum theory cannot accurately describe the deformation of the rock. In this paper, a relationship between the strain tensor and metric tensor was studied by analyzing the three states of elastic plastic deformation, and the elasto-plastic incompatible model was built. Additionally, the stress and deformation of a thick-walled cylinder under hydrostatic pressure was investigated by using a finite element program written in the FORTRAN language. The results show that the plastic strain is associated with not only deviator stress but also the distribution of defects (represented by the incompatible parameter R). With the value of R increasing, the defects in the rock increased, but the elastic plastic stiffness matrix decreased. Thus, as more rock enters the plastic state, the deformation of the surrounding rock is enlarged.


Author(s):  
Naveed Ahmad ◽  
Arifullah ◽  
Babar Ilyas ◽  
Sida Hussain

Experimental and numerical studies are presented evaluating the efficacy of a recycling technique applied to a 1:3 reduced scale damaged RC frame. The crumbled concrete at the beam-column connections was replaced with new high-strength concrete. Epoxy mortar was applied at the interface to secure bonding between the old and new concrete. Additionally, the connections were provisioned with steel haunches, applied below and above the beams. The retrofitted frame was tested under quasi-static cyclic loads. The lateral resistance-displacement hysteretic response of the tested frame was obtained to quantify hysteretic damping, derive the lateral resistance-displacement capacity curve, and develop performance levels. The technique improved the response of the frame; exhibiting an increase in the lateral stiffness, resistance and post-yield stiffness of the frame in comparison to the undamaged original frame. This good behaviour is attributed to the steel haunches installed at connections. A representative numerical model was calibrated in the finite element program SeismoStruct. A set of spectrum compatible ground motions were input to the numerical model for response history analysis. The story drift demands were computed for both the design basis and maximum considered earthquakes. Moreover, the technique was extended to a five-story frame, which was evaluated through nonlinear static pushover and response history analyses. Overstrength factor WR = 4.0 is proposed to facilitate analysis and preliminary design of steel haunches and anchors for retrofitting the low-/mid-rise RC frames.


2021 ◽  
Vol 18 (3) ◽  
pp. 219-228
Author(s):  
J.O. Akinyele ◽  
U.T. Igba ◽  
F.M. Alayaki ◽  
S.I. Kuye

Corrosion of steel and spalling of concrete in reinforced concrete elements have become a common occurrence in structures that are built around marine environment. This research investigated the effect of chloride on the steel in reinforced concrete beams. Mechanical tests such as; compressive, flexural and bond strengths were done on replicate concrete elements which were cast and buried for a maximum of one year in the Lagos lagoon. Twenty-four number of 150 mm x 150 mm x 600 mm sized reinforced concrete beams were cast for the flexural strength test, while forty-eight concrete cubes were cast for both compressive and bond strength tests, samples were cured in both lagoon and fresh water (The fresh water is for the control). A finite element program, ANSYS was used to model the deformation (deflection) of the steel reinforcement in the beams. Results showed a general reduction in compressive, flexural and bond strengths for the concrete samples buried in the lagoon, while those buried in freshwater showed an increase in strength as the concrete ages. The modelled results of the reinforcement showed a one-year deformation rate (r = 0.0181) in the steel of concrete buried in lagoon water. This value was used to estimate the future and past deformation values of these reinforcements due to chloride attack.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Saiwei Cheng ◽  
Xiaojie Li ◽  
Yang Wang ◽  
Yuxin Wang ◽  
Honghao Yan

In recent years, with the improvement of environmental protection requirements year by year and the continuous expansion of explosive working scale, higher standards have been put forward for explosive working. It is hoped that the sphere of influence of the explosion can be limited to a minimal range. The explosion vessel is driven by such demand. As the explosion vessel’s key component, studying the blast-resistant door in depth is of great significance. This paper introduces a new elliptical blast-resistant door with the combined structure (EBD), mainly welded with an elliptical panel, arc support plate, and triangle support plate. The finite element program AUTODYN was used to calculate the explosion load, and LS-DYNA was used to calculate the blast-resistant door’s dynamic response. The calculation results show that the newly proposed EBD’s blast-resistance capacity is better than that of the traditional structure. To further study the factors that affect the dynamic response of the EBD, a parametric study was carried out on the EBD, mainly analyzing the influence of the vacuum degree in the explosion vessel, the number of explosives, and the diameter ratio of the EBD. The parametric calculation results show that reducing the vacuum degree in the explosion vessel and the number of explosives during explosion working can improve the blast-resistance capacity of the EBD. Based on the analysis of the dynamic response of four kinds of EBD with different diameter ratios under 0.2 atm explosion load, the optimal diameter ratio of the EBD is given.


2021 ◽  
Vol 1203 (2) ◽  
pp. 022112
Author(s):  
Nicola Baldo ◽  
Matteo Miani ◽  
Fabio Rondinella ◽  
Clara Celauro

Abstract Establishing the structural integrity of an airport pavement is crucial to assess its remaining life and implement strategies or priorities for action. In this context, the elastic modulus represents an effective indicator of the condition of the pavement which can be calculated through back-calculation procedures starting from surface deflections, obtained from a non-destructive test (such as the Heavy Weight Deflectometer). Nevertheless, the conventional inverse engineering analysis involves the use of an axial-symmetric pavement finite-element program able to evaluate stiffness values exclusively at the deflection measuring points. This study presents an alternative methodology for spatial modelling of the load- bearing capacity of the runway surface pavement layer from deflection data measured at specific points, using Shallow Artificial Neural Networks. The search of the optimal neural model hyperparameters has been addressed through a Bayesian Optimization procedure and a 5-fold cross-validation has been implemented for a fair performance evaluation, given the limited number of deflection measures available. Once the optimal model has been defined, the measured surface deflection data were linearly interpolated and resampled gridding data were used as a new input matrix of the neural model to predict the expected value of elastic moduli at non-sampled points on the runway. The optimal BO model has returned very satisfactory results with a value of Pearson Coefficient R averaged over 5-fold equal to 0.96597 and of Mean Squared Error averaged over 5-fold equal to 0.01849. In such a way, a contour map of the runway stiffness has been drawn, to provide a support tool for the planning of intervention priorities.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7130
Author(s):  
Marcel Torrent ◽  
Balduí Blanqué

This work shows the results obtained from studying the influence of equivalent circuit resistances on three-phase induction motors. The stator resistance, rotor resistance, and iron losses resistance affect the different motor operating variables (output power, current, speed, power factor, starting ratios, and maximum torque). These influences have been quantified, paying particular attention to the losses affected and their impact on efficiency. The study carried out does not apply optimization techniques. It evaluates the different influences of the equivalent circuit’s different resistances on its operation by evaluating applicable constructive modifications concerning available motors. The work has been limited to three-phase induction motors up to 50 kW and low voltage, with the nominal powers of the selected motors being 0.25 kW, 1.5 kW, 7.5 kW, 22 kW, and 45 kW. The tools used to carry out the study are analyzing the equivalent circuit and the simulation of the electromagnetic structure using a finite-element program. The variations proposed in each resistance for all the motors studied is not purely theoretical, as it is based on applying feasible constructive modifications, appropriately analyzed and simulated. These modifications are the variation of the conductor diameter in the stator coils, the change of the section of the rotor cage, and the selection of different ferromagnetic steel types.


Sign in / Sign up

Export Citation Format

Share Document