A General Purpose Modular Computational Platform for Fluid-Structure Interaction Problems

Author(s):  
G. Pedro ◽  
A. Suleman ◽  
N. Djilali
1980 ◽  
Vol 102 (1) ◽  
pp. 62-69 ◽  
Author(s):  
T. Belytschko ◽  
J. M. Kennedy ◽  
D. F. Schoeberle

A quasi-Eulerian formulation is developed for fluid-structure interaction analysis in which the fluid nodes are allowed to move independent of the material thus facilitating the treatment of problems with large structural motions. The governing equations are presented in general form and then specialized to two-dimensional plane and axisymmetric geometries. These elements have been incorporated in a general purpose transient finite element program and results are presented for two problems and compared to experimental results.


Author(s):  
G. F. Dargush ◽  
P. K. Banerjee

A boundary element approach is developed for problems of hot fluid-structure interaction. The structure is idealized as a thermoelastic solid, and a time-domain, boundary-only integral formulation is described. Meanwhile, several approaches are discussed for the hot fluid. Integral equations are developed for both compressible and incompressible thermoviscous flow. Due to the presence of nonlinear convective terms in the governing differential equations, domain discretization is generally required. However, with the introduction of reference velocities, volume modeling often can be confined to regions near obstacles and walls. All formulations are implemented for two-dimensional problems in GP-BEST, a general purpose boundary element computer program. An overview of this numerical implementation is provided, along with several illustrative examples. The present fluid formulations are appropriate in the low to medium Reynolds number ranges, however, some enhancements required for higher speed simulations are noted.


2009 ◽  
Vol 76 (2) ◽  
Author(s):  
Ulrich Küttler ◽  
Wolfgang A. Wall

Fluid-structure interaction (FSI) solvers based on vector extrapolation methods are discussed. The FSI solver framework builds on a Dirichlet–Neumann partitioning between general purpose fluid and structural solver. For strong coupling of the two fields vector extrapolation methods are employed to obtain a matrix free nonlinear solver. The emphasis of this presentation is on the embedding of well known vector extrapolation methods in a popular FSI solver framework and, in particular, the relation of these vector extrapolation methods to established fixed-point FSI schemes.


1990 ◽  
Vol 112 (2) ◽  
pp. 243-250 ◽  
Author(s):  
G. F. Dargush ◽  
P. K. Banerjee

A boundary element approach is developed for problems of hot fluid-structure interaction. The structure is idealized as a thermoelastic solid, and a time-domain, boundary-only integral formulation is described. Meanwhile, several approaches are discussed for the hot fluid. Integral equations are developed for both compressible and incompressible thermoviscous flow. Due to the presence of nonlinear convective terms in the governing differential equations, domain discretization is generally required. However, with the introduction of reference velocities, volume modeling often can be confined to regions near obstacles and walls. All formulations are implemented for two-dimensional problems in GP-BEST, a general purpose boundary element computer program. An overview of this numerical implementation is provided, along with several illustrative examples. The present fluid formulations are appropriate in the low to medium Reynolds number ranges; however, some enhancements required for higher speed simulations are noted.


2014 ◽  
Author(s):  
Abdul Aziz Mohd. Yusof ◽  
◽  
Ardiyansyah Syahrom ◽  
M. N. Harun ◽  
A. H. Omar

Sign in / Sign up

Export Citation Format

Share Document