Higher-Order Compact Scheme for the Incompressible Navier-Stokes Equations in Spherical Geometry

2012 ◽  
Vol 11 (1) ◽  
pp. 99-113 ◽  
Author(s):  
T. V. S. Sekhar ◽  
B. Hema Sundar Raju ◽  
Y. V. S. S. Sanyasiraju

AbstractA higher-order compact scheme on the nine point 2-D stencil is developed for the steady stream-function vorticity form of the incompressible Navier-Stokes (N-S) equations in spherical polar coordinates, which was used earlier only for the cartesian and cylindrical geometries. The steady, incompressible, viscous and axially symmetric flow past a sphere is used as a model problem. The non-linearity in the N-S equations is handled in a comprehensive manner avoiding complications in calculations. The scheme is combined with the multigrid method to enhance the convergence rate. The solutions are obtained over a non-uniform grid generated using the transformation r=e? while maintaining a uniform grid in the computational plane. The superiority of the higher order compact scheme is clearly illustrated in comparison with upwind scheme and defect correction technique at high Reynolds numbers by taking a large domain. This is a pioneering effort, because for the first time, the fourth order accurate solutions for the problem of viscous flow past a sphere are presented here. The drag coefficient and surface pressures are calculated and compared with available experimental and theoretical results. It is observed that these values simulated over coarser grids using the present scheme are more accurate when compared to other conventional schemes. It has also been observed that the flow separation initially occurred at Re = 21.

1957 ◽  
Vol 2 (3) ◽  
pp. 237-262 ◽  
Author(s):  
Ian Proudman ◽  
J. R. A. Pearson

This paper is concerned with the problem of obtaining higher approximations to the flow past a sphere and a circular cylinder than those represented by the well-known solutions of Stokes and Oseen. Since the perturbation theory arising from the consideration of small non-zero Reynolds numbers is a singular one, the problem is largely that of devising suitable techniques for taking this singularity into account when expanding the solution for small Reynolds numbers.The technique adopted is as follows. Separate, locally valid (in general), expansions of the stream function are developed for the regions close to, and far from, the obstacle. Reasons are presented for believing that these ‘Stokes’ and ‘Oseen’ expansions are, respectively, of the forms $\Sigma \;f_n(R) \psi_n(r, \theta)$ and $\Sigma \; F_n(R) \Psi_n(R_r, \theta)$ where (r, θ) are spherical or cylindrical polar coordinates made dimensionless with the radius of the obstacle, R is the Reynolds number, and $f_{(n+1)}|f_n$ and $F_{n+1}|F_n$ vanish with R. Substitution of these expansions in the Navier-Stokes equation then yields a set of differential equations for the coefficients ψn and Ψn, but only one set of physical boundary conditions is applicable to each expansion (the no-slip conditions for the Stokes expansion, and the uniform-stream condition for the Oseen expansion) so that unique solutions cannot be derived immediately. However, the fact that the two expansions are (in principle) both derived from the same exact solution leads to a ‘matching’ procedure which yields further boundary conditions for each expansion. It is thus possible to determine alternately successive terms in each expansion.The leading terms of the expansions are shown to be closely related to the original solutions of Stokes and Oseen, and detailed results for some further terms are obtained.


2016 ◽  
Vol 8 (4) ◽  
pp. 21 ◽  
Author(s):  
Rakesh Ranjan ◽  
Anthony Theodore Chronopoulos ◽  
Yusheng Feng

In this paper we implement the element-by-element preconditioner and inexact Newton-Krylov methods (developed in the past) for solving stabilized computational fluid dynamics (CFD) problems with spectral methods. Two different approaches are implemented for speeding up the process of solving both steady and unsteady incompressible Navier-Stokes equations. The first approach concerns the application of a scalable preconditioner namely the element by element LU preconditioner, while the second concerns the application of Newton-Krylov (NK) methods for solving non-linear problems. We obtain good agreement with benchmark results on standard CFD problems for various Reynolds numbers. We solve the Kovasznay flow and flow past a cylinder at Re-$100$ with this approach. We also utilize the Newton-Krylov algorithm to solve (in parallel) important model problems such as flow past a circular obstacle in a Newtonian flow field, three dimensional driven cavity, flow past a three dimensional cylinder with different immersion lengths. We explore the scalability and robustness of the formulations for both approaches and obtain very good speedup. Effective implementations of these procedures demonstrate for relatively coarse macro-meshes<br />the power of higher order methods in obtaining highly accurate results in CFD. While the procedures adopted in the paper have been explored in the past the novelty lies with applications with higher order methods which have been known to be computationally intensive.


Sign in / Sign up

Export Citation Format

Share Document