Rotational Slip Flow in Coaxial Cylinders by the Finite-Difference Lattice Boltzmann Methods

2011 ◽  
Vol 9 (5) ◽  
pp. 1293-1314 ◽  
Author(s):  
Minoru Watari

AbstractRecent studies on applications of the lattice Boltzmann method (LBM) and the finite-difference lattice Boltzmann method (FDLBM) to velocity slip simulations are mostly on one-dimensional (1D) problems such as a shear flow between parallel plates. Applications to a 2D problem may raise new issues. The author performed numerical simulations of rotational slip flow in coaxial cylinders as an example of 2D problem. Two types of 2D models were used. The first were multi-speed FDLBM models proposed by the author. The second was a standard LBM, the D2Q9 model. The simulations were performed applying a finite difference scheme to both the models. The study had two objectives. The first was to investigate the accuracies of LBM and FDLBM on applications to rotational slip flow. The second was to obtain an experience on application of the cylindrical coordinate system. The FDLBM model with 8 directions and the D2Q9 model showed an anisotropic flow pattern when the relaxation time constant or the Knudsen number was large. The FDLBM model with 24 directions showed accurate results even at large Knudsen numbers.

Author(s):  
Ru Yang ◽  
Chin-Sheng Wang

A Lattice Boltzmann method is employed to investigate the flow characteristics and the heat transfer phenomenon between two parallel plates separated by a micro-gap. A nine-velocity model and an internal energy distribution model are used to obtain the mass, momentum and temperature distributions. It is shown that for small Knudsen numbers (Kn), the current results are in good agreement with those obtained from the traditional Navier-Stokes equation with non-slip boundary conditions. As the value of Kn is increased, it is found that the non-slip condition may no longer be valid at the wall boundary and that the flow behavior changes to one of slip-flow. In slip flow regime, the present results is still in good agreement with slip-flow solution by Navier Stokes equations. The non-linear nature of the pressure and friction distribution for micro-channel flow is gieven. Finally, the current investigation presents a prediction of the temperature distribution for micro-channel flow under the imposed conditions of an isothermal boundary.


2003 ◽  
Vol 17 (01n02) ◽  
pp. 183-187 ◽  
Author(s):  
G. H. TANG ◽  
W. Q. TAO ◽  
Y. L. HE

Forced convective flow and heat transfer between two parallel plates are studied using the lattice Boltzmann method (LBM) in this paper. Three kinds of thermal boundary conditions at the top and bottom plates are studied. The velocity field is simulated using density distribution function while a separate internal energy distribution function is introduced to simulate the temperature field. The results agree well with data from traditional finite volume method (FVM) and analytical solutions. The present work indicates that LBM may be developed as a promising method for predicting convective heat transfer because of its many inherent advantages.


Sign in / Sign up

Export Citation Format

Share Document