scholarly journals Data from Beetle-Moorcroft et al. (2021), Exploring conceptual models of infiltration and groundwater recharge on an intermittent river: the role of geologic controls

2020 ◽  
Author(s):  
Fern Beetle-Moorcroft ◽  
◽  
Kamini Singha ◽  
Kamini Singha ◽  
Margaret A. Shanafield ◽  
...  

2020 ◽  
Author(s):  
Andrew Ireson ◽  
◽  
Garth van der Kamp ◽  
Edward Bam

2021 ◽  
Author(s):  
Hamish Johnson ◽  
Jean-Christophe Comte ◽  
Ulrich Ofterdinger ◽  
Rachel Cassidy ◽  
Mads Troldborg

<p>The environmental fate and transport of nitrogen and phosphorus nutrient species leached from agroecosystems are largely influenced by the hydrogeological setting, which dictates the distribution of groundwater flow pathways, residence times, and physio-chemical properties of the subsurface. Traditional conceptual models tend to oversimplify these relationships, and their application towards river catchment nutrient management promotes insufficient characterisation of hydrogeological heterogeneity, which is subsequently not accounted for. Until recently, very little hydrogeological information and conceptual understanding existed for groundwater systems within the postglacial basement terranes of Scotland and Northern Ireland, due to an abundance of surface water resources and prevalence of poorly productive bedrock aquifers. Recent research has demonstrated the role of geological heterogeneity in determining the contaminant transport behaviour of these hard-rock aquifers, where the presence of weathering and fracturing can potentially result in the rapid delivery of nutrients to rural water supplies and groundwater-dependent ecosystems.</p><p>We aim to further elucidate the role of hydrogeological setting in river catchment nutrient dynamics to improve agricultural sustainability in geologically heterogeneous agricultural regions. This will be achieved by developing conceptual models of nutrient fate and transport for two contrasting agricultural river catchments. Here, we present preliminary conceptual models based on a literature review of groundwater systems within the same geological terranes, analysis of hydrochemical monitoring data, and accounting for catchment-specific features through desk studies of geological and airborne geophysical surveys.</p><p>The River Ythan is a groundwater-dominated lowland catchment within Scotland’s arable belt, designated a Nitrate Vulnerable Zone due to the eutrophication of its estuary. This catchment is geologically complex, with a variably metamorphosed and sheared Precambrian basement with igneous intrusions ranging from ultrabasic rocks to granite. This complexity is enhanced by the significant preservation of Tertiary weathering profiles and an extensive but discontinuous cover of glacial deposits derived from the saprolites. The superficial deposits create a shallow aquifer system characterized by oxic, well-mixed groundwaters with high nitrate concentrations. The bedrock groundwater bodies feature lower nitrate concentrations with variable denitrification rates, resulting from the relationships between lithology, tectonics, and weathering.</p><p>Two upland headwater sub-catchments of the Upper Bann River (Co. Down, Northern Ireland) drain either side of the contact between a granodiorite laccolith and Lower Palaeozoic metasedimentary rocks within an elevated drumlinoid landscape. Here, diffuse phosphorus exports to surface waters have not experienced the same extent of decline observed in storm runoff phosphorus following the implementation of nutrient management policies. Anoxic groundwaters favourable for denitrification may result in the release of previously adsorbed (legacy) phosphorus following the reductive dissolution of Fe (hydr)oxides. These conditions are generated by (a) confinement by thick, drumlinised clayey tills; and (b) bedrock structures promoting deep groundwater flow.</p><p>The site-specific conceptual models will be further developed through multi-scale geophysical characterisation of hydrogeological heterogeneity and constrained by the catchment-scale distribution of residence times derived from stable (<sup>2</sup>H, <sup>18</sup>O) and radioactive (<sup>3</sup>H) isotope compositions of groundwaters. These refined conceptual models can guide the development of numerical groundwater models and spatially targeted nutrient management.</p>


2020 ◽  
Vol 28 (8) ◽  
pp. 2917-2932
Author(s):  
Sara Nowreen ◽  
R. G. Taylor ◽  
M. Shamsudduha ◽  
M. Salehin ◽  
A. Zahid ◽  
...  

AbstractGroundwater is used intensively in Asian mega-deltas yet the processes by which groundwater is replenished in these deltaic systems remain inadequately understood. Drawing insight from hourly monitoring of groundwater levels and rainfall in two contrasting settings, comprising permeable surficial deposits of Holocene age and Plio-Pleistocene terrace deposits, together with longer-term, lower-frequency records of groundwater levels, river stage, and rainfall from the Bengal Basin, conceptual models of recharge processes in these two depositional environments are developed. The representivity of these conceptual models across the Bengal Basin in Bangladesh is explored by way of statistical cluster analysis of groundwater-level time series data. Observational records reveal that both diffuse and focused recharge processes occur in Holocene deposits, whereas recharge in Plio-Pleistocene deposits is dominated by indirect leakage from river channels where incision has enabled a direct hydraulic connection between river channels and the Plio-Pleistocene aquifer underlying surficial clays. Seasonal cycles of recharge and discharge including the onset of dry-season groundwater-fed irrigation are well characterised by compiled observational records. Groundwater depletion, evident from declining groundwater levels with a diminished seasonality, is pronounced in Plio-Pleistocene environments where direct recharge is inhibited by the surficial clays. In contrast, intensive shallow groundwater abstraction in Holocene environments can enhance direct and indirect recharge via a more permeable surface geology. The vital contributions of indirect recharge of shallow groundwater identified in both depositional settings in the Bengal Basin highlight the critical limitation of using models that exclude this process in the estimation of groundwater recharge in Asian mega-deltas.


1980 ◽  
Vol 72 (7) ◽  
pp. 391-400 ◽  
Author(s):  
Emanuel Idelovitch ◽  
Richard Terkeltoub ◽  
Medy Michail

Sign in / Sign up

Export Citation Format

Share Document