microbial adaptation
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 38)

H-INDEX

24
(FIVE YEARS 5)

mSystems ◽  
2022 ◽  
Author(s):  
Trinity L. Hamilton ◽  
Jeff Havig

Hot spring cyanobacteria have long been model systems for examining ecological diversification as well as characterizing microbial adaptation and evolution to extreme environments. These studies have reported cyanobacterial diversification in hot spring outflow channels that can be defined by distinct temperature ranges.


Author(s):  
Yingdong Li ◽  
Hongbin Liu ◽  
Wen-Xiong Wang

Despite the extensive studies on the toxicity of antibacterial silver (either ionic Ag+ or nanoparticle - AgNPs) at the cellular or organismic levels, little is known about their differences in...


2021 ◽  
Author(s):  
Swagata Saikia

A fast-growing field of research focuses on microbial biocontrol within the phyllosphere. Phyllosphere microorganisms possess biocontrol capacity with good range of adaptation to the phyllosphere environment and inhibit the expansion of microbial pathogens, thus sustaining plant health. These biocontrol factors are often categorized in direct, microbe-microbe, and indirect, host-microbe, interactions. This review gives an summary of the modes of action of microbial adaptation and biocontrol within the phyllosphere, the genetic basis of the mechanisms and samples of experiments which will detect these mechanisms in laboratory and field experiments. Detailed insights in such mechanisms are key for the rational design of novel microbial biocontrol strategies and increase crop protection and production. Such novel biocontrol strategies are much needed in today’s world to ensure sufficient food production to feed the growing world population.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2871
Author(s):  
Rodrigo da Silva Marques ◽  
Reinaldo Fernandes Cooke

Ionophores have been widely used in the beef and dairy industry for decades to improve feed efficiency and performance by altering ruminal fermentation dynamics, increasing the level of propionate. Ionophores can also reduce ruminal proteolysis and ammonia synthesis, thus increasing the influx of protein into the small intestine in cattle, leading to improvements in performance and efficiency responses. Ionophores indirectly impact ruminal methanogenesis by decreasing the substrate used to produce methane. Despite the consistent benefits of using ionophores in cattle nutrition, their utilization is under public scrutiny due to concerns related to microbial adaptation. However, there is inconsistent evidence supporting these concerns, whereas ionophores are still an important dietary tool to enhance productivity and profitability in beef production systems.


2021 ◽  
Author(s):  
Ariane L Peralta ◽  
Mario E Muscarella ◽  
Alexandra Stucy ◽  
Jo A Werba ◽  
Michael W McCoy

Climate change induced salinization events are predicted to intensify and lead to increased salt stress in freshwater aquatic ecosystems. As a consequence, formerly distinct abiotic conditions and associated biotic communities merge, and the emergence, loss, and persistence of microbial taxa modify the types and rates of ecosystem processes. This study examined how bacterial taxonomic and phylogenetic diversity and ecosystem function respond to acute salinization events where freshwater and estuarine communities and environments coalesce. We hypothesize that if the salinity change outpaces microbial adaptation or saline microbial populations are not yet established in formerly freshwater conditions, then we predict diminished carbon cycling rates, decreased microbial diversity, and altered the composition of microbial communities compared to historically freshwater communities. We used an experimental mesocosm approach to determine how salinity and the merging of distinct communities influenced resultant bacterial community structure and function. Each mesocosm represented different salinities (0, 5, 9, 13 psu). Two dispersal treatments, representing aquatic communities sourced from brackish 13 psu ponds and a mix of 13 psu and freshwater ponds, were added to all salinity levels and replicated four times. Results revealed that salinity, but not dispersal, decreased bacterial taxonomic and phylogenetic diversity. Carbon mineralization rates were highest in freshwater conditions and associated with low relative abundance indicator taxa. Acute salinity changes, such as localized flooding due to storm surge, will more negatively affect freshwater aquatic communities compared to chronic exposure to salinization where the communities have had time to adapt or turnover resulting in recovered biogeochemical functions.


mBio ◽  
2021 ◽  
Author(s):  
Anna Maikova ◽  
Pierre Boudry ◽  
Anna Shiriaeva ◽  
Aleksandra Vasileva ◽  
Anaïs Boutserin ◽  
...  

CRISPR-Cas systems provide prokaryotes with adaptive immunity for defense against foreign nucleic acid invaders, such as viruses or phages and plasmids. The CRISPR-Cas systems are highly diverse, and detailed studies of individual CRISPR-Cas subtypes are important for our understanding of various aspects of microbial adaptation strategies and for the potential applications.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255826
Author(s):  
Neelja Singhal ◽  
Anjali Garg ◽  
Nirpendra Singh ◽  
Pallavi Gulati ◽  
Manish Kumar ◽  
...  

Secretory proteins are important for microbial adaptation and survival in a particular environment. Till date, experimental secretomes have been reported for a few archaea. In this study, we have identified the experimental secretome of Picrophilous torridus and evaluated the efficacy of various signal peptide predictors (SPPs) in identifying signal peptides (SPs) in its experimental secretome. Liquid chromatography mass spectrometric (LC MS) analysis was performed for three independent P. torridus secretome samples and only those proteins which were common in the three experiments were selected for further analysis. Thus, 30 proteins were finally included in this study. Of these, 10 proteins were identified as hypothetical/uncharacterized proteins. Gene Ontology, KEGG and STRING analyses revealed that majority of the sercreted proteins and/or their interacting partners were involved in different metabolic pathways. Also, a few proteins like malate dehydrogenase (Q6L0C3) were multi-functional involved in different metabolic pathways like carbon metabolism, microbial metabolism in diverse environments, biosynthesis of antibiotics, etc. Multi-functionality of the secreted proteins reflects an important aspect of thermoacidophilic adaptation of P. torridus which has the smallest genome (1.5 Mbp) among nonparasitic aerobic microbes. SPPs like, PRED-SIGNAL, SignalP 5.0, PRED-TAT and LipoP 1.0 identified SPs in only a few secreted proteins. This suggests that either these SPPs were insufficient, or N-terminal SPs were absent in majority of the secreted proteins, or there might be alternative mechanisms of protein translocation in P. torridus.


Sign in / Sign up

Export Citation Format

Share Document