scholarly journals RT-PCR and CP gene based molecular characterization of a cucumber mosaic cucumovirus from Aligarh, U.P., India

2012 ◽  
Vol 03 (08) ◽  
pp. 971-978 ◽  
Author(s):  
Shahid Ali ◽  
Masood Akhtar ◽  
Kangabam S. Singh ◽  
Qamar A. Naqvi
Plant Disease ◽  
2009 ◽  
Vol 93 (2) ◽  
pp. 196-196 ◽  
Author(s):  
B. N. Shen ◽  
Y. X. Zheng ◽  
W. H. Chen ◽  
T. Y. Chang ◽  
H.-M. Ku ◽  
...  

Pineapple (Ananas comosus) is one of the major fruit crops in Taiwan, accounting for 275 million U.S. dollars in 2006, following betel nut and citrus production in crop value. Tainung No. 17 is the most important cultivar, accounting for more than 70% of pineapples planted. Mealybug wilt of pineapple (MWP) is one of the most destructive diseases of pineapple. Pineapple mealybug wilt-associated virus-1 (PMWaV-1), PMWaV-2, and PMWaV-3 were identified as three distinct species in Ampelovirus from diseased Hawaiian pineapple (1,2). In November of 2007, pineapples (cv. Tainung No. 17) planted in Pingtung County of southern Taiwan showed symptoms similar to MWP. Mealybugs (Dysmicoccus brevipes) were also found. Three primer pairs, 225/226, 223/224, and 263/264 described previously specific for the HSP70h genes of PMWaV-1 (1), -2, and -3 (2), respectively, were used to detect the presence of these three viruses by reverse transcription (RT)-PCR. Expected DNA fragments of 590, 610, and 499 nt were obtained from the total RNA isolated from the leaves of diseased pineapples with primer pairs 225/226, 223/224, and 263/264, respectively. The RT-PCR amplified fragments were cloned, sequenced, and analyzed. The 590-nt fragment (Accession No. EU769113) shared 91.6 to 99.5% nucleotide and 96.8 to 99.5% amino acid identity to those of five isolates of PMWaV-1 available in the GenBank; one each from Hawaii (Accession No. AF414119) and Thailand (Accession No. EF620774) and three from Australia (Accession Nos. EF488752, EF467923, and EF467925). The 610-nt fragment (Accession No. EU769115) showed 98.7 and 99.7% nucleotide and 98% and 100% amino acid identity to those of PMWaV-2 from Hawaii (Accession No. AF283103) and Thailand (Accession No. EU016675), respectively. The 499-nt fragment (Accession No. FJ209047) shared 86.8 to 99.0% nucleotide and 94.0 to 100.0% amino acid identity to those of five PMWaV-3 isolates available in the GenBank; one from Hawaii (Accession No. DQ399259) and four from Australia (Accession Nos. EF467918, EF467919, EF488754, and EF488755). Using primer pairs FJ08-1 (5′-ATGGCTGATTCGAGC)/FJ08-2 (5′-TTATTTGCGTCCACC), FJ08-7 (5′-AGTGAGATTGATCGT)/FJ08-8 (5′-TGCAGGTATCCGCTG), and FJ08-35 (5′-AACGACCGAACTCGC)/FJ08-36 (5′-ATACTACAGATATTG) specific to the coat protein (CP) genes of PMWaV-1, -2, and -3, respectively, expected DNA fragments of 774, 909, and 789 nt were amplified by RT-PCR. The 774-nt CP gene of PMWaV-1 (Accession No. EU769114) shared 99% nucleotide and 98.4% amino acid identity to those of Hawaiian isolate (Accession No. AF414119). The 909-nt CP gene of PMWaV-2 (Accession No. EU769116) shared 99.0 and 99.1% nucleotide identity with isolates from Hawaii (Accession No. AF283103) and Cuba (Accession No. DQ225114), respectively, and 99.3% amino acid identity with both. The 789-nt CP gene of PMWaV-3 (Accession No. FJ209048) shared 99.1% nucleotide and 98.1% amino acid identity to those of the Hawaiian isolate (Accession No. DQ399259). One to two viruses among PMWaV-1, -2, and -3 were detected in all 40 samples collected from diseased pineapples. To our knowledge, this is the first report to identify three PMWaVs in the most important and widely planted pineapple cultivar in Taiwan, Tainung No. 17, by molecular characterization of the HSP70h and CP genes. References: (1) D. M. Sether et al. Plant Dis. 85:856, 2001. (2) D. M. Sether et al. Plant Dis. 89:450, 2005.


Author(s):  
K. Saratbabu ◽  
K. Vemana ◽  
A.K. Patibanda ◽  
B. Sreekanth ◽  
V. Srinivasa Rao

Background: Peanut stem necrosis disease (PSND) caused by Tobacco streak virus (TSV) is a major constraint for groundnut production in Andhra Pradesh (A.P.). However, studies on prevalence and spread of the disease confined to only few districts of A.P. with this background current study focused on incidence and spread of the disease in entire state of A.P. Further an isolate of TSV occurring in A.P. characterized on the basis of genetic features by comparing with other TSV isolates originated from different hosts and locations from world.Methods: Roving survey was conducted during kharif 2017-18 in groundnut growing districts of Andhra Pradesh (A.P.) for peanut stem necrosis disease incidence. Groundnut plants showing PSND symptoms were collected and tested with direct antigen coating enzyme linked immunosorbent assay (DAC-ELISA). Groundnut samples found positive by ELISA once again tested by reverse transcription polymerase chain reaction (RT-PCR). The representative TSV-GN-INDVP groundnut isolate from Prakasham district was maintained on cowpea seedlings by standard sap inoculation method in glasshouse for further molecular characterization. The Phylogenetic tree for coat protein (CP) gene was constructed using aligned sequences with 1000 bootstrap replicates following neighbor-joining phylogeny.Result: Thirty-eight (52.7%) of seventy-two groundnut samples collected from different locations in A.P were given positive reaction to TSV by DAC-ELISA. For the first time, PSND incidence observed in coastal districts (Krishna, Guntur, Sri Pottisriramulu Nellore, Prakasham) of A.P. Maximum PSND incidence recorded from Bathalapalli (22.2%) and the minimum incidence in Mulakalacheruvu (4.1%). The coat protein (CP) gene of TSV-GN-INDVP groundnut isolate was amplified by RT-PCR and it shared maximum per cent nucleotide identity (97.51-98.62%) with TSV isolates from groundnut and other different crops reported in India. All Indian isolates cluster together irrespective of crop and location based on the phylogenetic analysis.


2006 ◽  
Vol 53 (6) ◽  
pp. 257-265 ◽  
Author(s):  
G. La Rosa ◽  
M. Muscillo ◽  
A. Di Grazia ◽  
S. Fontana ◽  
M. Iaconelli ◽  
...  

Author(s):  
Terezinha Lisieux Moraes Coimbra ◽  
Raimundo N. Santos ◽  
Selma Petrella ◽  
Teresa Keico Nagasse-Sugahara ◽  
Silvana Beres Castrignano ◽  
...  

Rocio virus (ROCV) was responsible for an explosive encephalitis epidemic in the 1970s affecting about 1,000 residents of 20 coastland counties in São Paulo State, Brazil. ROCV was first isolated in 1975 from the cerebellum of a fatal human case of encephalitis. Clinical manifestations of the illness are similar to those described for St. Louis encephalitis. ROCV shows intense antigenic cross-reactivity with Japanese encephalitis complex (JEC) viruses, particularly with Ilheus (ILHV), St. Louis encephalitis, Murray Valley and West Nile viruses. In this study, we report a specific RT-PCR assay for ROCV diagnosis and the molecular characterization of the SPAn37630 and SPH37623 strains. Partial nucleotide sequences of NS5 and E genes determined from both strains were used in phylogenetic analysis. The results indicated that these strains are closely related to JEC viruses, but forming a distinct subclade together with ILHV, in accordance with results recently reported by Medeiros et al. (2007).


2021 ◽  
Vol 61 (3) ◽  
pp. 214-220

Onion yellow dwarf virus is distributed worldwide significantly reducing yield of crops from the Allium genus. The aim of the study was the detection and molecular characterization of newly identified OYDV isolates infecting onions in Poland. The virus was detected by transmission electron microscopy and RT-PCR techniques using two pairs of diagnostic primers: OYDV-NibCPF1/R1 and OYDV-CPF2/R2. The specificity of obtained RT-PCR products was confirmed by Sanger sequencing and received viral coat protein sequence was used for phylogenetic analysis. The phylogenetic analysis was carried out using CP sequences of the new Polish onion isolate obtained in this study and 37 other sequences of OYDV retrieved from GenBank. The analysis revealed that the Polish OYDV isolate is the most similar to the OYDV isolates derived from onions from Argentina and Germany, which may indicate their common origin. Moreover, it was observed that the Polish onion and garlic isolates are very diverse and belong to different phylogroups.


Vox Sanguinis ◽  
1995 ◽  
Vol 68 (2) ◽  
pp. 121-128 ◽  
Author(s):  
B.R. DuPont ◽  
S.G. Grant ◽  
S.H. Oto ◽  
W.L. Bigbee ◽  
R.H. Jensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document