decoherence rate
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 12)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Luca Buoninfante ◽  
Gaetano Lambiase ◽  
Luciano Petruzziello

AbstractIn this paper, we study the phenomenon of quantum interference in the presence of external gravitational fields described by alternative theories of gravity. We analyze both non-relativistic and relativistic effects induced by the underlying curved background on a superposed quantum system. In the non-relativistic regime, it is possible to come across a gravitational counterpart of the Bohm–Aharonov effect, which results in a phase shift proportional to the derivative of the modified Newtonian potential. On the other hand, beyond the Newtonian approximation, the relativistic nature of gravity plays a crucial rôle. Indeed, the existence of a gravitational time dilation between the two arms of the interferometer causes a loss of coherence that is in principle observable in quantum interference patterns. We work in the context of generalized quadratic theories of gravity to compare their physical predictions with the analogous outcomes in general relativity. In so doing, we show that the decoherence rate strongly depends on the gravitational model under investigation, which means that this approach turns out to be a promising test bench to probe and discriminate among all the extensions of Einstein’s theory in future experiments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luciano Petruzziello ◽  
Fabrizio Illuminati

AbstractSchemes of gravitationally induced decoherence are being actively investigated as possible mechanisms for the quantum-to-classical transition. Here, we introduce a decoherence process due to quantum gravity effects. We assume a foamy quantum spacetime with a fluctuating minimal length coinciding on average with the Planck scale. Considering deformed canonical commutation relations with a fluctuating deformation parameter, we derive a Lindblad master equation that yields localization in energy space and decoherence times consistent with the currently available observational evidence. Compared to other schemes of gravitational decoherence, we find that the decoherence rate predicted by our model is extremal, being minimal in the deep quantum regime below the Planck scale and maximal in the mesoscopic regime beyond it. We discuss possible experimental tests of our model based on cavity optomechanics setups with ultracold massive molecular oscillators and we provide preliminary estimates on the values of the physical parameters needed for actual laboratory implementations.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Naeimeh Mohseni ◽  
Marek Narozniak ◽  
Alexey N. Pyrkov ◽  
Valentin Ivannikov ◽  
Jonathan P. Dowling ◽  
...  

AbstractIncorporating protection against quantum errors into adiabatic quantum computing (AQC) is an important task due to the inevitable presence of decoherence. Here, we investigate an error-protected encoding of the AQC Hamiltonian, where qubit ensembles are used in place of qubits. Our Hamiltonian only involves total spin operators of the ensembles, offering a simpler route towards error-corrected quantum computing. Our scheme is particularly suited to neutral atomic gases where it is possible to realize large ensemble sizes and produce ensemble-ensemble entanglement. We identify a critical ensemble size Nc where the nature of the first excited state becomes a single particle perturbation of the ground state, and the gap energy is predictable by mean-field theory. For ensemble sizes larger than Nc, the ground state becomes protected due to the presence of logically equivalent states and the AQC performance improves with N, as long as the decoherence rate is sufficiently low.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 352
Author(s):  
Abdel-Baset A. Mohamed ◽  
Eied. M. Khalil ◽  
Mahmoud M. Selim ◽  
Hichem Eleuch

The dynamics of two charged qubits containing Josephson Junctions inside a cavity are investigated under the intrinsic decoherence effect. New types of quantum correlations via local quantum Fisher information and Bures distance norm are explored. We show that we can control the quantum correlations robustness by the intrinsic decoherence rate, the qubit-qubit coupling as well as by the initial coherent states superposition. The phenomenon of sudden changes and the freezing behavior for the local quantum Fisher information are sensitive to the initial coherent state superposition and the intrinsic decoherence.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrés de los Ríos Sommer ◽  
Nadine Meyer ◽  
Romain Quidant

AbstractQuantum control of a system requires the manipulation of quantum states faster than any decoherence rate. For mesoscopic systems, this has so far only been reached by few cryogenic systems. An important milestone towards quantum control is the so-called strong coupling regime, which in cavity optomechanics corresponds to an optomechanical coupling strength larger than cavity decay rate and mechanical damping. Here, we demonstrate the strong coupling regime at room temperature between a levitated silica particle and a high finesse optical cavity. Normal mode splitting is achieved by employing coherent scattering, instead of directly driving the cavity. The coupling strength achieved here approaches three times the cavity linewidth, crossing deep into the strong coupling regime. Entering the strong coupling regime is an essential step towards quantum control with mesoscopic objects at room temperature.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Ning Bao ◽  
Aidan Chatwin-Davies ◽  
Jason Pollack ◽  
Grant N. Remmen

Abstract We study the effects of gravitationally-driven decoherence on tunneling processes associated with false vacuum decays, such as the Coleman-De Luccia instanton. We compute the thermal graviton-induced decoherence rate for a wave function describing a perfect fluid of nonzero energy density in a finite region. When the effective cosmological constant is positive, the thermal graviton background sourced by a de Sitter horizon provides an unavoidable decoherence effect, which may have important consequences for tunneling processes in cosmological history. We discuss generalizations and consequences of this effect and comment on its observability and applications to black hole physics.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 265
Author(s):  
Joris Kattemölle ◽  
Jasper van Wezel

Decoherence is the main obstacle to quantum computation. The decoherence rate per qubit is typically assumed to be constant. It is known, however, that quantum registers coupling to a single reservoir can show a decoherence rate per qubit that increases linearly with the number of qubits. This effect has been referred to as superdecoherence, and has been suggested to pose a threat to the scalability of quantum computation. Here, we show that superdecoherence is absent when the spectrum of the single reservoir is continuous, rather than discrete. The reason of this absence, is that, as the number of qubits is increased, a quantum register inevitably becomes susceptible to an ever narrower bandwidth of frequencies in the reservoir. Furthermore, we show that for superdecoherence to occur in a reservoir with a discrete spectrum, one of the frequencies in the reservoir has to coincide exactly with the frequency the quantum register is most susceptible to. We thus fully resolve the conditions that determine the presence or absence of superdecoherence. We conclude that superdecoherence is easily avoidable in practical realizations of quantum computers.


2020 ◽  
Vol 98 (5) ◽  
pp. 458-463 ◽  
Author(s):  
Ran Zhang ◽  
Xiang-Guo Meng ◽  
Jian-Meng Sun ◽  
Ji-Suo Wang

In this paper, the decoherence features of the photon-added displaced thermal state (PADTS) in the amplitude decay channel were studied by analytically and numerically investigating the time evolution of the Wigner function. The normal product representation of density for the PADTS is presented. The results indicate that the nonclassicality of PADTS can revive after disappearing with time. This kind of revival can maintain for a period of time and inevitably disappear eventually. However, we find that the operation of adding photons has the effect of reducing the decoherence rate of PADTS in the amplitude decay channel, although it also can decrease the PADTS’s nonclassicality markedly.


2020 ◽  
Vol 35 (15) ◽  
pp. 2050117
Author(s):  
Alexander I. Nesterov ◽  
Gennady P. Berman ◽  
Vladimir I. Tsifrinovich ◽  
Xidi Wang ◽  
Marco Merkli

We suggest that the pseudo-scalar vacuum (PSV) field in the dark matter (DM) sector of the Universe may be as important as the electromagnetic vacuum field in the baryonic sector. In particular, the spin–spin interaction between the DM fermions, mediated by PSV, may represent the strongest interaction between the DM fermions due to the absence of the electric charge and the magnetic dipole moment. Based on this assumption, we consider the influence of the spin–spin interaction, mediated by PSV, on the spin precession of the DM fermions (e.g. neutralino). In the secular approximation, we obtain the exact expression describing the frequency of the precession and estimate the decoherence rate.


Sign in / Sign up

Export Citation Format

Share Document