A Krylov Space-Based Finite Element Time Domain Method for Broadband Frequency Domain Solutions

2017 ◽  
Vol 06 (04) ◽  
pp. 95-104
Author(s):  
Weiyang Lin
2020 ◽  
Vol 91 (5) ◽  
pp. 2872-2880 ◽  
Author(s):  
Felix Bernauer ◽  
Joachim Wassermann ◽  
Heiner Igel

Abstract Inertial sensors like seismometers or accelerometers are sensitive to tilt motions. In general, from pure acceleration measurements, it is not possible to separate the tilt acceleration from the translational ground acceleration. This can lead to severe misinterpretation of seismograms. Here, we present three different methods that can help solving this problem by correcting translational records for dynamic tilt induced by ground deformation with direct measurements of rotational motions: (1) a simple time-domain method, (2) a frequency-domain method proposed by Crawford and Webb (2000) using a coherence-weighted transfer function between rotation and acceleration, and (3) an adapted frequency-domain method that corrects only those parts of the spectrum with coherence between translational acceleration and rotation angle higher than 0.5. These three methods are discussed in three different experimental settings: (1) a reproducible and precisely known laboratory test using a high-precision tilt table, (2) a synthetic test with a simulated volcanic very-long-period event, and (3) a real data set recorded during the 2018 Mt. Kīlauea caldera collapse. All the three test cases show severe influence of tilt motion on the acceleration measurements. The time-domain method and the adapted frequency-domain method show very similar performance in all three test cases. Those two methods are able to remove the tilt component reliably from the acceleration record.


Author(s):  
Ziying Wu ◽  
Hongzhao Liu ◽  
Lilan Liu ◽  
Pengfei Li ◽  
Daning Yuan

This paper describes two approaches for the simultaneous identification of the coulomb and viscous parameters in kinematical joints. One is a time-domain method (TDM) and the other is a frequency-domain method (FDM). Simulation shows that both of the two methods have good performances in identifying friction at high SNR (90dB). But at low SNR (20dB), the estimation accuracy of the frequency-domain method is higher than that of the time-domain method. A field experiment employing a linkage mechanism driven by motor is also carried out. The experimental results obtained by the two approaches are almost identical under different experiment conditions. It has been concluded that the presented identification methods of friction in kinematical joints are correct and applicable.


Sign in / Sign up

Export Citation Format

Share Document