frequency domain method
Recently Published Documents


TOTAL DOCUMENTS

463
(FIVE YEARS 74)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Fei Duan ◽  
Yuliang Liu

Lifting pipe used in deep ocean mining is the tool to transport mineral from seabed to vessel. In this study, a vessel was retrofitted as an experimental ship for deep ocean mining with a U-type lifting pipe installed on the right side of vessel. Assuming pipe as a rigid structure, the impact of pipe on movements of vessel were discussed based on frequency domain method for hydrodynamic analysis.


Author(s):  
Guillermo M. Álamo ◽  
Luis A. Padrón ◽  
Juan J. Aznárez ◽  
Orlando Maeso

AbstractThis paper presents a three–dimensional linear numerical model for the dynamic and seismic analysis of pile-supported structures that allows to represent simultaneously the structures, pile foundations, soil profile and incident seismic waves and that, therefore, takes directly into account structure–pile–soil interaction. The use of advanced Green’s functions to model the dynamic behaviour of layered soils, not only leads to a very compact representation of the problem and a simplification in the preparation of the data files (no meshes are needed for the soil), but also allows to take into account arbitrarily complex soil profiles and problems with large numbers of elements. The seismic excitation is implemented as incident planar body waves (P or S) propagating through the layered soil from an infinitely–distant source and impinging on the site with any generic angle of incidence. The response of the system is evaluated in the frequency domain, and seismic results in time domain are then obtained using the frequency–domain method through the use of the Fast Fourier Transform. An application example using a pile-supported structure is presented in order to illustrate the capabilities of the model. Piles and columns are modelled through Timoshenko beam elements, and slabs, pile caps and shear walls are modelled using shell finite elements, so that the real flexibility of all elements can be rigorously taken into account. This example is also used to explore the influence of soil profile and angle of incidence on different variables of interest in earthquake engineering.


2021 ◽  
Vol 21 (5) ◽  
pp. 417-424
Author(s):  
Woo-Yong Yang ◽  
Dal-Jae Yun ◽  
Dong-Wook Seo

One of the major issues in multifunction radars is time resource allocation to maximize the radar’s ability. If jet engine modulation (JEM) is more efficiently performed in an insufficient dwell-time environment, the remaining time can be allocated for other tasks. This study presents a novel automatic algorithm for estimating the jet engine blade number of insufficient JEM signals. We employed a harmonic selection rule and a modified empirical mode decomposition (EMD) with an adaptive low-pass filtering. For a refined autocorrelation waveform, the analysis focuses on a desirable combination of intrinsic mode functions derived from the modified EMD. The approach is significant because it enables reliable estimation despite the insufficient JEM signal. Also, the proposed algorithm is innovative because it uses only the time-domain method, not the frequency-domain method. The application is expected to enhance the efficiency of radar resource management.


Geophysics ◽  
2021 ◽  
pp. 1-84
Author(s):  
Wei Jiang ◽  
Xuehua Chen ◽  
Bingnan Lv ◽  
shuaishuai jiang

Frequency-domain numerical modeling of the seismic wave equation can readily describe frequency-dependent seismic wave behaviors, yet is computationally challenging to perform in finely discretized or large-scale geological models. Conventional finite-difference frequency-domain (FDFD) methods for solving the Helmholtz equation usually lead to large linear systems that are difficult to solve with a direct or iterative solver. Parallel strategies and hybrid solvers can partially alleviate the computational burden by improving the performance of the linear system solver. We develop a novel multiscale FDFD method to eventually construct a dimension-reduced linear system from the scalar Helmholtz equation based on the general framework of heterogeneous multiscale method (HMM). The methodology associated with multiscale basis functions in the multiscale finite-element method (MsFEM) is applied to the local microscale problems of this multiscale FDFD method. Solved from frequency- and medium-dependent local Helmholtz problems, these multiscale basis functions capture fine-scale medium heterogeneities and are finally incorporated into the dimension-reduced linear system by a coupling of scalar Helmholtz problem solutions at two scales. We use several highly heterogeneous models to verify the performance in terms of the accuracy, efficiency, and memory cost of our multiscale method. The results show that our new method can solve the scalar Helmholtz equation in complicated models with high accuracy and quite low time and memory costs compared with the conventional FDFD methods.


2021 ◽  
Vol 508 ◽  
pp. 230283
Author(s):  
Armin Abbasalinejad ◽  
Münir M. Besli ◽  
Jonathan W. Hammond ◽  
Seung Hyun Chung ◽  
Jake Christensen ◽  
...  

2021 ◽  
Vol 18 (4) ◽  
pp. 594-604
Author(s):  
Bangyu Wu ◽  
Wenzhuo Tan ◽  
Wenhao Xu

Abstract The large computational cost and memory requirement for the finite difference frequency domain (FDFD) method limit its applications in seismic wave simulation, especially for large models. For conventional FDFD methods, the discretisation based on minimum model velocity leads to oversampling in high-velocity regions. To reduce the oversampling of the conventional FDFD method, we propose a trapezoid-grid FDFD scheme to improve the efficiency of wave modeling. To alleviate the difficulty of processing irregular grids, we transform trapezoid grids in the Cartesian coordinate system to square grids in the trapezoid coordinate system. The regular grid sizes in the trapezoid coordinate system correspond to physical grid sizes increasing with depth, which is consistent with the increasing trend of seismic velocity. We derive the trapezoid coordinate system Helmholtz equation and the corresponding absorbing boundary condition, then get the FDFD stencil by combining the central difference method and the average-derivative method (ADM). Dispersion analysis indicates that our method can satisfy the requirement of maximum phase velocity error less than $1\%$ with appropriate parameters. Numerical tests on the Marmousi model show that, compared with the regular-grid ADM 9-point FDFD scheme, our method can achieve about $80\%$ computation efficiency improvement and $80\%$ memory reduction for comparable accuracy.


2021 ◽  
Author(s):  
Christian Berthold ◽  
Johann Gro\xdf ◽  
Christian Frey ◽  
Malte Krack

Author(s):  
Shuting Xu ◽  
Zhe Zhang ◽  
Zhongkai Zhang ◽  
Wenjiang Yang ◽  
Haibin Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document