scholarly journals Analysis of Anopheles arabiensis Blood Feeding Behavior in Southern Zambia during the Two Years after Introduction of Insecticide-Treated Bed Nets

2010 ◽  
Vol 83 (4) ◽  
pp. 848-853 ◽  
Author(s):  
Christen M. Fornadel ◽  
Douglas E. Norris ◽  
Gregory E. Glass ◽  
Laura C. Norris
F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1217 ◽  
Author(s):  
Irfanul Chakim ◽  
Tepanata Pumpaibool

Background: Malaria is a significant health burden for many countries worldwide. Insecticide-treated bed nets and mosquito repellent are considered effective methods for preventing Anopheles bites. However, changes in the biological properties of the vector have led to a reduction in their effectiveness. Most published studies have only investigated the human population factor, not the dynamics of vector behavior. Therefore, this study aims to investigate the importance of primary vector activity for selecting an appropriate malaria protection strategy. Methods: Initially, active case detection (ACD) was carried out in western and eastern parts of Indonesia, Jambi and Sumba, to confirm their endemicity level. According to the 2016 national health report of Indonesia, Jambi has an annual parasite index (API) of 0.14 and Sumba has an API of 5.41. A series of entomological observations were carried out to compare the biting activity of Anopheles vector in two localities, with a total of 216 houses and catchers (108 in each study site). Results: The results indicated that endemicity at the sub-district level is higher than that at the provincial level. Only Anopheles balabacensi was found to be exophagic. Multiple comparisons found different biting times between the sites, suggesting that early evening (18.00-20.00) is most likely to be the time when mosquitos transmit the Plasmodium parasite in Jambi, while during sleeping hours (21.00-01.00) is the peak biting time of Anopheles mosquitos in Sumba. Conclusions: The study demonstrates the importance of Anopheles species blood feeding patterns in selecting an appropriate malaria protection strategy.


F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 1217
Author(s):  
Irfanul Chakim ◽  
Tepanata Pumpaibool

Background: Malaria is a significant health burden for many countries worldwide. Insecticide-treated bed nets and mosquito repellent are considered effective methods for preventing Anopheles bites. However, changes in the biological properties of the vector have led to a reduction in their effectiveness. Most published studies have only investigated the human population factor, not the dynamics of vector behavior. Therefore, this study aims to investigate the importance of primary vector activity for selecting an appropriate malaria protection strategy. Methods: Initially, active case detection (ACD) was carried out in western and eastern parts of Indonesia, Jambi and Sumba, to confirm their endemicity level. According to the 2016 national health report of Indonesia, Jambi has an annual parasite index (API) of 0.14 and Sumba has an API of 5.41. A series of entomological observations were carried out to compare the biting activity of Anopheles vectors in two localities, with a total of 216 houses and 216 catchers (108 at each study site). Results: The results indicated that endemicity at the sub-district level is higher than that at the provincial level. Only Anopheles balabacensi was found to be exophagic. Multiple comparisons found different biting times between the sites, suggesting that early evening (18.00-20.00) is most likely to be the time when mosquitoes transmit the Plasmodium parasite in Jambi, while during sleeping hours (21.00-01.00) is the peak biting time of Anopheles mosquitoes in Sumba. Conclusions: The study demonstrates the importance of Anopheles species blood feeding patterns in selecting an appropriate malaria protection strategy.


2019 ◽  
Author(s):  
Eunho Suh ◽  
Marissa K. Grossman ◽  
Jessica L. Waite ◽  
Nina L. Dennington ◽  
Ellie Sherrard-Smith ◽  
...  

AbstractInsecticide-treated bed nets reduce malaria transmission by limiting contact between mosquito vectors and human hosts when mosquitoes feed during the night. However, malaria vectors can also feed in the early evening and in the morning when people are not protected. Here, we explored how timing of blood feeding interacts with environmental temperature to influence the capacity of Anopheles mosquitoes to transmit the human malaria parasite, Plasmodium falciparum. We found no effect of biting time itself on the proportion of mosquitoes that became infectious (vector competence) at constant temperature. However, when mosquitoes were maintained under more realistic fluctuating temperatures there was a significant increase in competence for mosquitoes feeding in the evening, and a significant reduction in competence for those feeding in the morning, relative to those feeding at midnight. These effects appear to be due to thermal sensitivity of malaria parasites during the initial stages of parasite development within the mosquito, and the fact that mosquitoes feeding in the evening experience cooling temperatures during the night, whereas mosquitoes feeding in the morning quickly experience warming temperatures that are inhibitory to parasite establishment. A transmission dynamics model illustrates that such differences in competence could have important implications for disease endemicity, the extent of transmission that persists in the presence of bed nets, and the epidemiological impact of behavioural resistance. These results indicate the interaction of temperature and feeding behaviour to be a major ecological determinant of the vectorial capacity of malaria mosquitoes.


F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 1217
Author(s):  
Irfanul Chakim ◽  
Tepanata Pumpaibool

Background: Malaria is a significant health burden for many countries worldwide. Insecticide-treated bed nets and mosquito repellent are considered effective methods for preventing Anopheles bites. However, changes in the biological properties of the vector have led to a reduction in their effectiveness. The vector has been studied, but the behaviour has been poorly examined. Therefore, this study aims to investigate the importance of primary vector activity for selecting an appropriate malaria protection strategy. Methods: Initially, active case detection (ACD) was carried out in western and eastern parts of Indonesia, Jambi and Sumba, to confirm their endemicity level. According to the 2016 national health report of Indonesia, Jambi has an annual parasite index (API) of 0.14 and Sumba has an API of 5.41. A series of entomological observations were carried out to compare the biting activity of Anopheles vectors in two localities, with a total of 216 houses and 216 catchers (108 at each study site). Results: The results indicated that endemicity at the sub-district level is higher than that at the provincial level. Only Anopheles balabacensi was found to be exophagic. Multiple comparisons found different biting times between the sites, suggesting that early evening (18.00-20.00) is most likely to be the time when mosquitoes transmit the Plasmodium parasite in Jambi, while during sleeping hours (21.00-01.00) is the peak biting time of Anopheles mosquitoes in Sumba. Conclusions: The study demonstrates the importance of Anopheles species blood feeding patterns in selecting an appropriate malaria protection strategy.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1217
Author(s):  
Irfanul Chakim ◽  
Tepanata Pumpaibool

Background: Malaria is a significant health burden for many countries worldwide. Insecticide-treated bed nets and mosquito repellent are considered effective methods for preventing Anopheles bites. However, changes in the biological properties of the vector have led to a reduction in their effectiveness. Most published studies have only investigated the human population factor, not the dynamics of vector behavior. Therefore, this study aims to investigate the importance of primary vector activity for selecting an appropriate malaria protection strategy. Methods: Initially, active case detection (ACD) was carried out in western and eastern parts of Indonesia, Jambi and Sumba, to confirm their endemicity level. According to the 2016 national health report of Indonesia, Jambi has an annual parasite index (API) of 0.14 and Sumba has an API of 5.41. A series of entomological observations were carried out to compare the biting activity of Anopheles vector in two localities, with a total of 216 houses and 216 catchers (108 in each study site). Results: The results indicated that endemicity at the sub-district level is higher than that at the provincial level. Only Anopheles balabacensi was found to be exophagic. Multiple comparisons found different biting times between the sites, suggesting that early evening (18.00-20.00) is most likely to be the time when mosquitoes transmit the Plasmodium parasite in Jambi, while during sleeping hours (21.00-01.00) is the peak biting time of Anopheles mosquitoes in Sumba. Conclusions: The study demonstrates the importance of Anopheles species blood feeding patterns in selecting an appropriate malaria protection strategy.


2015 ◽  
Vol 14 (1) ◽  
Author(s):  
Ana Paula Abílio ◽  
Pelágio Marrune ◽  
Nilsa de Deus ◽  
Francisco Mbofana ◽  
Pedro Muianga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document