Coordination Control Strategy for Mode Switching of a Parallel Hybrid Electric System Based on Continuously Variable Transmission

2020 ◽  
Vol 13 (2) ◽  
Author(s):  
Xiaohua Zeng ◽  
Xiaojian Li ◽  
Bingbing Dong
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jing Sun ◽  
Guojing Xing ◽  
Xudong Liu ◽  
Xiaoling Fu ◽  
Chenghui Zhang

The torque coordination control during mode transition is a very important task for hybrid electric vehicle (HEV) with a clutch serving as the key enabling actuator element. Poor coordination will deteriorate the drivability of the driver and lead to excessive wearing to the clutch friction plates. In this paper, a novel torque coordination control strategy for a single-shaft parallel hybrid electric vehicle is presented to coordinate the motor torque, engine torque, and clutch torque so that the seamless mode switching can be achieved. Different to the existing model predictive control (MPC) methods, only one model predictive controller is needed and the clutch torque is taken as an optimized variable rather than a known parameter. Furthermore, the successful idea of model reference control (MRC) is also used for reference to generate the set-point signal required by MPC. The parameter sensitivity is studied for better performance of the proposed model predictive controller. The simulation results validate that the proposed novel torque coordination control strategy has less vehicle jerk, less torque interruption, and smaller clutch frictional losses, compared with the baseline method. In addition, the sensitivity and adaptiveness of the proposed novel torque coordination control strategy are evaluated.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401882481 ◽  
Author(s):  
Hangyang Li ◽  
Xiaolan Hu ◽  
Bing Fu ◽  
Jiande Wang ◽  
Feitie Zhang ◽  
...  

Hybrid electric vehicles equipped with continuously variable transmission show dramatic improvements in fuel economy and driving performance because they can continuously adjust the operating points of the power source. This article proposes an optimal control strategy for continuously variable transmission–based hybrid electric vehicles with a pre-transmission parallel configuration. To explore the fuel-saving potential of the given configuration, a ‘control-oriented’ quasi-static vehicle model is built, and dynamic programming is adopted to determine the optimal torque split factor and continuously variable transmission speed ratio. However, a single-criterion cost function will lead to undesirable drivability problems. To tackle this problem, the main factors affecting the driving performance of a continuously variable transmission–based hybrid electric vehicle are studied. On that basis, a multicriterion cost function is proposed by introducing drivability constraints. By varying the weighting factors, the trade-off between fuel economy and drivability can be evaluated under a predetermined driving cycle. To validate the effectiveness of the proposed method, simulation experiments are performed under four different driving cycles, and the results indicate that the proposed method greatly enhanced the drivability without significantly increasing fuel consumption. Compared to a single-criterion cost function, the use of multiple criteria is more representative of real-world driving behaviour and thus provides better reference solutions to evaluate suboptimal online controllers.


Sign in / Sign up

Export Citation Format

Share Document