Analysis of Fuel Cell Vehicles Equipped with Compressed Hydrogen Storage Systems from a Road Accident Safety Perspective

2011 ◽  
Vol 4 (1) ◽  
pp. 332-342 ◽  
Author(s):  
Joerg Bakker ◽  
Christian Sachs ◽  
Dietmar Otte ◽  
Rainer Justen ◽  
Lars Hannawald ◽  
...  
2009 ◽  
Vol 34 (15) ◽  
pp. 6265-6270 ◽  
Author(s):  
David Wenger ◽  
Wolfgang Polifke ◽  
Eberhard Schmidt-Ihn ◽  
Tarek Abdel-Baset ◽  
Steffen Maus

Author(s):  
David Tamburello ◽  
Bruce Hardy ◽  
Claudio Corgnale ◽  
Martin Sulic ◽  
Donald Anton

Numerical models for the evaluation of cryo-adsorbent based hydrogen (H2) storage systems for fuel cell vehicles were developed and validated against experimental data. These models simultaneously solve the equations for the adsorbent thermodynamics together with the conservation equations for heat, mass, and momentum. The models also use real gas thermodynamic properties for hydrogen. Model predictions were compared to data for charging and discharging both activated carbon and MOF-5™ systems. Applications of the model include detailed finite element analysis simulations and full vehicle-level system analyses. The full system models were used to compare prospective system design performance given specific options, such as the adsorbent materials, pressure vessel types, internal heat exchangers, and operating conditions. The full vehicle model, which also allows the user to compare adsorbent systems with compressed gas, metal hydride, and chemical hydrogen storage systems, is based on an 80 kW fuel cell with a 20 kW battery evaluated using standard drive cycles. This work is part of the Hydrogen Storage Engineering Center of Excellence (HSECoE), which brings materials development and hydrogen storage technology efforts together to address onboard hydrogen storage in light duty vehicle applications. The HSECoE spans the design space of the vehicle requirements, balance of plant requirements, storage system components, and materials engineering. Theoretical, computational, and experimental efforts are combined to evaluate, design, analyze, and scale potential hydrogen storage systems and their supporting components against the Department of Energy (DOE) 2020 and Ultimate Technical Targets for Hydrogen Storage Systems for Light Duty Vehicles.


Solar Energy ◽  
2005 ◽  
Vol 78 (5) ◽  
pp. 687-694 ◽  
Author(s):  
Vinay Ananthachar ◽  
John J. Duffy

Author(s):  
David Tamburello ◽  
Bruce Hardy ◽  
Martin Sulic ◽  
Matthew Kesterson ◽  
Claudio Corgnale ◽  
...  

Numerical models for the evaluation of cryo-adsorbent based hydrogen storage systems for fuel cell vehicles were developed and validated against experimental data. These models simultaneously solve the conservation equations for heat, mass, and momentum together with the equations for the adsorbent thermodynamics. The models also use real gas thermodynamic properties for hydrogen. Model predictions were compared to data for charging and discharging both MOF-5™ and activated carbon systems. Applications of the model include detailed finite element analysis simulations as well as full vehicle-level system analyses. The present work provides an overview of the compacted adsorbent MOF-5™ storage prototype system, as well as a detailed computational analysis and its validation using 2-liter prototype test system. The results of these validated computational analyses are then projected to a full scale vehicle system, based on an 80 KW fuel cell with a 20 kW battery. This work is part of the Hydrogen Storage Engineering Center of Excellence (HSECoE), which brings materials development and hydrogen storage technology efforts address onboard hydrogen storage in light duty vehicle applications. The HSECoE spans the design space of the vehicle requirements, balance of plant requirements, storage system components, and materials engineering. Theoretical, computational, and experimental efforts are combined to evaluate, design, analyze, and scale potential hydrogen storage systems and their supporting components against the Department of Energy (DOE) 2020 and Ultimate Technical Targets for Hydrogen Storage Systems for Light Duty Vehicles.


2014 ◽  
Vol 268 ◽  
pp. 950-959 ◽  
Author(s):  
Kriston P. Brooks ◽  
Troy A. Semelsberger ◽  
Kevin L. Simmons ◽  
Bart van Hassel

Author(s):  
Andris R. Abele

On-board storage and handling of hydrogen continues to be a major challenge on the road to the widespread commercialization of hydrogen fuel cell vehicles. QUANTUM Fuel Systems Technologies WorldWide, Inc. (QUANTUM) is developing a number of advanced technologies in response to the demand by its customers for compact, lightweight, safe, robust, and cost-effective hydrogen fuel systems. QUANTUM approaches hydrogen storage and handling as an engineered system integrated into the design of the vehicle. These engineered systems comprise advanced storage, regulation, metering, and electronic controls developed by QUANTUM. In 2001, QUANTUM validated, commercialized, and began production of lightweight compressed hydrogen storage systems. The first commercial products include storage technologies that achieved 7.5 to 8.5 percent hydrogen storage by weight at 350 bar (5,000 psi). QUANTUM has also received German TUV regulatory approval for its 700 bar (10,000-psi) TriShield10™ hydrogen storage cylinder, based on hydrogen standards developed by the European Integrated Hydrogen Project (EIHP). QUANTUM has patented an In-Tank Regulator for use with hydrogen and CNG, which have applications in both fuel cell and alternative fuel vehicle markets. To supplement the inherent safety features designed into the new 700 bar storage tank, QUANTUM’s patented 700 bar In-Tank Regulator provides additional safety by confining the high pressure in the tank and allowing only a maximum delivery pressure of 10 bar (150-psi) outside the storage system. This paper describes initial applications for these hydrogen fuel systems, which have included fuel cell automobiles, buses, and hydrogen refueling stations.


Author(s):  
L. Zhang ◽  
M. Wen ◽  
Z. Y. Li ◽  
J. Y. Zheng ◽  
X. X. Liu ◽  
...  

Materials safety and selection for the application of metals in high-pressure hydrogen storage of fuel cell vehicles were introduced based on the hydrogen gas embrittlement (HGE) examinations using the materials testing equipment. Testing steps are as follows; the 1st step is the tensile test in high-pressure hydrogen by slow strain rate technique to evaluate the effect of hydrogen and divide the materials into five categories based on stress-strain curves. The materials of type III, IV and V are picked up and their yield points and ultimate tensile strengths are collected. The 2nd step is the fracture mechanics test to obtain KICs and KIHs of type III, IV and V materials. The materials of type IV and V are considered to be applicable as usual. The 3rd step is the crack growth test to obtain the fatigue crack growth data. A special consideration of HGE is taken for the design of the equipment with limited operation period or cycles for the materials of type III. The issue of the Kth’s reproducibility remains unresolved, which calls another testing method and design concept. Candidate materials are then nominated following the procedure of materials selection.


Sign in / Sign up

Export Citation Format

Share Document