Numerical Study of Gas Purge in Proton Exchange Membrane Fuel Cell

2021 ◽  
Author(s):  
Jiaxu Zhu ◽  
Can Liu ◽  
Sichuan Xu
Author(s):  
Saher Al Shakhshir ◽  
Xin Gao ◽  
Torsten Berning

Abstract In a previous numerical study on heat and mass transfer in air-cooled proton exchange membrane fuel cells, it was found that the performance is limited by heat transfer to the cathode side air stream that serves as a coolant, and it was proposed to place a turbulence grid before the cathode inlet in order to induce a mixing effect to the air and thereby improve the heat transfer and ultimately increase the limiting current and maximum power density. The current work summarizes experiments with different turbulence grids which varied in terms of their pore size, grid thickness, rib width, angle of the pores, and the distance between the grid and the cathode inlet. For all grids tested in this study, the limiting current density of a Ballard Mark 1020 ACS stack was increased by 20%. The single most important parameter was the distance between the turbulence grid and the cathode inlet, and it should be within 5 mm. For the best grid tested, the fuel cell stack voltage and thus the efficiency were increased by up to 20%. The power density was increased by more than 30% and further improvements are believed to be possible.


2014 ◽  
Vol 592-594 ◽  
pp. 1687-1691
Author(s):  
Pal Vaibhav ◽  
P. Karthikeyan ◽  
R. Anand

As fossil fuels are becoming less reliable and more costly, the Proton Exchange Membrane Fuel Cell (PEMFC) is emerging as the primary candidate to replace the stationary and transport applications. In this study numerical simulation on PEMFC is done by commercially available Computational Fluid Dynamics (CFD) software. A three-dimensional, model of a single PEM Fuel cell with serpentine flow field design has been used for the study. The numerical model is 3-D steady, incompressible, single phase and isothermal includes the governing of mass, momentum, energy, and species along with electrochemical equations. All of these equations are simultaneously solved in order to get current flux density and H2, O2and H2O fractions along the flow field design.


2010 ◽  
Vol 51 (5) ◽  
pp. 959-968 ◽  
Author(s):  
Xiao-Dong Wang ◽  
Wei-Mon Yan ◽  
Yuan-Yuan Duan ◽  
Fang-Bor Weng ◽  
Guo-Bin Jung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document