limiting current
Recently Published Documents


TOTAL DOCUMENTS

655
(FIVE YEARS 149)

H-INDEX

35
(FIVE YEARS 8)

Author(s):  
Xiaoyang Dong ◽  
Jinxing Wang ◽  
Xiao Wang ◽  
Jingdong Yang ◽  
Ling Zhu ◽  
...  

Abstract Developing efficient, durable, and cost-effective non-noble metal catalysts for oxygen reduction reaction (ORR) is necessary to promote the efficiency and performance of Mg-air batteries. Herein, the Co3O4/CuO nanoparticles were synthesized by a low-cost and simple approach using CuCo-based prussian blue analogue (PBA) as precursor of pyrolysis at different calcination temperatures. It was found that the Co3O4/CuO nanoparticles calcined at 600ºC (CCO-600) have relatively small size and superior ORR performance. The onset potential is 0.889 V and the diffusion limiting current density achieves 6.746 mA·cm-2, as well as prominent stability in 0.1 M KOH electrolyte. The electron transfer number of the CCO-600 is 3.89 under alkaline medium, which indicates that the reaction mechanism of ORR is dominated by 4 e process, similar to commercial Pt. The primary Mg-air battery with the CCO-600 as the cathode catalyst has been assembled and possesses better discharge performance than the CuCo-based PBA. The open circuit voltage of CCO-600 arrives at 1.76 V and energy density of 1895.95 mWh/g. This work provides an effective strategy to develop non-noble metal ORR catalyst for the application of metal-air batteries


2022 ◽  
Vol 14 (2) ◽  
pp. 880
Author(s):  
Tondepu Subbaiah ◽  
Ponnam Vijetha ◽  
Barsha Marandi ◽  
Kali Sanjay ◽  
Manickam Minakshi

Current density plays a major role in deciding the plant size, current efficiency, and energy consumption in electrorefining cells. In general, operating current density will be 40% of the limiting current density. Forced circulation of the electrolyte in the presence of promoters improves the mass transfer coefficient. In the present study, rectangular turbulence promoters are fitted at the bottom side of the cell to improve the mass transfer coefficient at the cathode support plate. The limiting current density technique is used to measure the mass transfer coefficient. The variables covered in the present study are the effects of flow rate, promoter height, and spacing among the promoters. The electrolyte consists of copper sulfate and sulphuric acid. At a regulated flow rate, the electrolyte is pumped from the recirculation tank to the cell through an intermediate overhead tank. The limiting current density increased with an increasing flow rate in the presence of promoters, and thus the overall mass transfer coefficient on the cathode support plate also improved. With an increase in the flow rate of the electrolyte from 6.67 × 10−6 to 153.33 m3/s, limiting current density increased from 356.8 to 488.8 A/m2 for spacing of 0.30 m, with a promoter height of 0.01 m. However, it is noteworthy that when the promoter height is increased from 0.01 to 0.07 m, the overall mass transfer coefficient is found to increase up to 60%, but with the further increase in the promoter height to 0.30 m the mass transfer coefficient starts to decrease. Therefore, the optimized cell parameters are established in this work. The current sustainable concept of employing rectangular turbulence promoters will bring benefits to any precious metal refining or electrowinning tank house electrolytes.


Author(s):  
Wenyi Wang ◽  
Xueqin Wang ◽  
Yuanyuan Wang ◽  
Bolong Jiang ◽  
Hua Song

Abstract Graphene is a very attractive 2D carbon material, while the synthesis route of functional graphene is complex and complicated. The purpose of this study is to develop Co/N co-doped grapheme catalyst for ORR.Herein, a facile and universal pyrolysis method to explore the preparation of Co-N co-doped graphene through thermal exfoliation of 3D Co0.5Zn0.5-ZIF metal-organic framework by dimension reduction, and study the specific changes during process of dimensionality reduction, aiming at contributing to the transformation mode of 3D materials into 2D materials. The results showed that LiCl and KCl play different roles, namely the building carbon layer, pore-creating and exfoliation and acted simultaneously when they are added. A unique ultrathin 2D morphology of Co/N co-doped graphene, pores formed with the volatilization of zinc ions, and the appearance of abundant Co-Nx active sites, which endow efficient catalytic activity of oxygen reduction reaction (ORR) in the alkaline electrolyte. Co/N-Go-Li/K-800 possesses the superior ORR activity among Co/N-Go-Li/K-T with an onset potential (0.15V vs Ag/AgCl) and higher limiting current density([email protected] vs. Ag/AgCl) (-5.20 mA•cm-2) closer to Pt/C (0.17V vs. Ag/AgCl and -5.86 mA•cm-2).


Author(s):  
Qiang Huang

Abstract A systematic electrochemical study is carried out on electrolytes with superhigh concentrations of fructose. The effect of fructose concentration on the viscosity and conductivity of electrolyte are determined and analyzed using Walden rule and the theory of rate process. The diffusion rates of proton and cupric cation are calculated from the peak current in cyclic voltammogram on stationary electrode and the limiting current on rotating electrodes. Raman spectroscopy is used to characterize the hydrogen bond network in water and the effect of fructose concentration on such network. Rhenium deposition with different fructose concentrations is studied on rotating disc electrodes. X-ray fluorescence, X-ray diffraction, and four point probe measurements at cryogenic temperature are used to study the deposition rate, crystallographic structure, and superconductivity of film, respectively.


2022 ◽  
pp. 413701
Author(s):  
Yihang Dong ◽  
Xiaoming Sun ◽  
Zhaoyang Liu ◽  
Guoxing Qiu ◽  
Xiaofang Zhang ◽  
...  

Author(s):  
Christophe Gerling ◽  
Matthias Hanauer ◽  
Ulrich Berner ◽  
Kaspar Andreas Friedrich

Abstract The anode and cathode kinetics are parameterized based on differential cell measurements. Systematic parameter variations are evaluated to disentangle the dependencies of the electrochemical impedance spectroscopy (EIS) signatures in H2/H2 mode. We introduce a new CO recovery protocol for both electrodes that enables to accurately characterize the hydrogen oxidation reaction (HOR) kinetics. Then, we demonstrate that a compact Tafel kinetics law captures the oxygen reduction reaction (ORR) kinetics for a full factorial grid of conditions, covering a wide range of relative humidities (rH), temperatures, oxygen partial pressures and current densities. This yields the characteristic activation energy and effective reaction order, and we reconcile models that make different assumptions regarding the rH dependency. Moreover, we analyze O2 transport contributions by steady-state and transient limiting current techniques and heliox measurements. Although the rising uncertainty of loss corrections at high current densities makes it impossible to unambiguously identify an intrinsic potential-dependent change of the Tafel slope, our data support that such effect needs not be considered for steady-state cathodic half-cell potentials above 0.8 V.


2021 ◽  
Vol 22 (24) ◽  
pp. 13518
Author(s):  
Natalia Pismenskaya ◽  
Olesya Rybalkina ◽  
Ilya Moroz ◽  
Semen Mareev ◽  
Victor Nikonenko

Visualization of electroconvective (EC) vortices at the undulated surface of an AMX anion-exchange membrane (Astom, Osaka, Japan) was carried out in parallel with the measurement of chronopotentiograms. Weak polybasic acid salts, including 0.02 M solutions of tartaric (NaHT), phosphoric (NaH2PO4), and citric (NaH2Cit) acids salts, and NaCl were investigated. It was shown that, for a given current density normalized to the theoretical limiting current calculated by the Leveque equation (i/ilimtheor), EC vortex zone thickness, dEC, decreases in the order NaCl > NaHT > NaH2PO4 > NaH2Cit. This order is inverse to the increase in the intensity of proton generation in the membrane systems under study. The higher the intensity of proton generation, the lower the electroconvection. This is due to the fact that protons released into the depleted solution reduce the space charge density, which is the driver of EC. In all studied systems, a region in chronopotentiograms between the rapid growth of the potential drop and the attainment of its stationary values corresponds to the appearance of EC vortex clusters. The amplitude of the potential drop oscillations in the chronopotentiograms is proportional to the size of the observed vortex clusters.


Author(s):  
Vivaan Patel ◽  
Jacqueline Maslyn ◽  
Saheli Chakraborty ◽  
Gurmukh K Sethi ◽  
Irune Villalengua ◽  
...  

Abstract We have studied the cycle life of two polyhedral oligomeric silsesquioxane-b-poly(ethylene oxide)-b-polyhedral oligomeric silsesquioxane (POSS-PEO-POSS) block copolymer electrolytes differing primarily in molecular weights and composition using lithium/polymer/lithium symmetric cells. The higher molecular weight electrolyte, labeled H, has a higher storage modulus, Gel. However, the volume fraction of the conducting phase in the low molecular weight electrolyte, labeled L, is higher and this leads to a four-fold increase in limiting current density, iL. Measurement of ionic conductivity provides insight into the reason for the observed differences in limiting current density. The average lifetime of symmetric cells with electrolyte L was slightly higher than that of cells with electrolyte H. The combined effect of mechanical and electrochemical properties of electrolytes on the stability of lithium electrodeposition was quantified by examining two dimensionless parameters, i/iL and Gel/GLi, introduced in the theory developed by Barai and Srinivasan [Phys. Chem. Chem. Phys., 19, 20493–20505 (2017)]. This theory predicts the regime of stable lithium electrodeposition as a function of these two parameters. Despite large differences in Gel and iL between the two electrolytes, we show that similar cell lifetimes are consistent with the theoretical predictions of unstable lithium electrodeposition without resorting to any adjustable parameters.


Sign in / Sign up

Export Citation Format

Share Document