Power Plant Design Considerations for the Operation of an Electrical Dragline From On-site Generators

1989 ◽  
Author(s):  
James M. Daley
2018 ◽  
Vol 13 (2) ◽  
pp. 107
Author(s):  
Flur Ismagilov ◽  
Vajcheslav Vavilov ◽  
Oksana Yushkova ◽  
Vladimir Bekuzin ◽  
Alexey Veselov

1981 ◽  
Vol 103 (1) ◽  
pp. 65-77 ◽  
Author(s):  
Colin F. McDonald ◽  
Murdo J. Smith

For several years, design studies have been underway in the U.S. on a nuclear closed-cycle gas turbine plant (HTGR-GT). This paper presents design aspects of the helium turbo-machine portion of these studies. Gas dynamic and mechanical design considerations are presented for helium turbomachines in the 400 MWe (non-intercooled) and 600 MWe (intercooled) power range. Design of the turbomachine is a key element in the overall power plant program effort, which is currently directed towards the selection of a reference HTGR-GT commercial plant configuration for the U.S. utility market. A conservative design approach has been emphasized to provide for maximum safety and durability. The studies presented for the integrated plant concept outline the necessary close working relationship between the reactor primary system and turbomachine designers. State-of-the-art technology from large industrial gas turbines developed in the U.S., considered directly applicable to the design of a helium turbomachine, particularly in the areas of design methodology, performance, materials, and fabrication methods, is emphasized.


Author(s):  
Paul S. Weitzel

Babcock & Wilcox Power Generation Group, Inc. (B&W) has received a competitively bid award from the United States (U.S.) Department of Energy to perform the preliminary front-end engineering design of an advanced ultra-supercritical (A-USC) steam superheater for a future A-USC component test program (ComTest) achieving 760C (1400F) steam temperature. The current award will provide the engineering data necessary for proceeding to detail engineering, manufacturing, construction and operation of a ComTest. The steam generator superheater would subsequently supply the steam to an A-USC intermediate pressure steam turbine. For this study the ComTest facility site is being considered at the Youngstown Thermal heating plant facility in Youngstown, Ohio. The ComTest program is important because it would place functioning A-USC components in operation and in coordinated boiler and turbine service. It is also important to introduce the power plant operation and maintenance personnel to the level of skills required and provide initial hands-on training experience. Preliminary fabrication, construction and commissioning plans are to be developed in the study. A follow-on project would eventually provide a means to exercise the complete supply chain events required to practice and refine the process for A-USC power plant design, supply, manufacture, construction, commissioning, operation and maintenance. Representative participants would then be able to transfer knowledge and recommendations to the industry. ComTest is conceived as firing natural gas in a separate standalone facility that will not jeopardize the host facility or suffer from conflicting requirements in the host plant’s mission that could sacrifice the nickel alloy components and not achieve the testing goals. ComTest will utilize smaller quantities of the expensive materials and reduce the risk in the first operational practice for A-USC technology in the U.S. Components at suitable scale in ComTest provide more assurance before applying them to a full size A-USC demonstration plant. The description of the pre-front-end engineering design study and current results will be presented.


Sign in / Sign up

Export Citation Format

Share Document