design concepts
Recently Published Documents


TOTAL DOCUMENTS

2361
(FIVE YEARS 465)

H-INDEX

52
(FIVE YEARS 7)

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Hammad Ahmed ◽  
Hongyoon Kim ◽  
Yuebian Zhang ◽  
Yuttana Intaravanne ◽  
Jaehyuck Jang ◽  
...  

Abstract Optical vortices (OVs) carrying orbital angular momentum (OAM) have attracted considerable interest in the field of optics and photonics owing to their peculiar optical features and extra degree of freedom for carrying information. Although there have been significant efforts to realize OVs using conventional optics, it is limited by large volume, high cost, and lack of design flexibility. Optical metasurfaces have recently attracted tremendous interest due to their unprecedented capability in the manipulation of the amplitude, phase, polarization, and frequency of light at a subwavelength scale. Optical metasurfaces have revolutionized design concepts in photonics, providing a new platform to develop ultrathin optical devices for the realization of OVs at subwavelength resolution. In this article, we will review the recent progress in optical metasurface-based OVs. We provide a comprehensive discussion on the optical manipulation of OVs, including OAM superposition, OAM sorting, OAM multiplexing, OAM holography, and nonlinear metasurfaces for OAM generation and manipulation. The rapid development of metasurface for OVs generation and manipulation will play an important role in many relevant research fields. We expect that metasurface will fuel the continuous progress of wearable and portable consumer electronics and optics where low-cost and miniaturized OAM related systems are in high demand.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 515
Author(s):  
Qi Luo ◽  
Jiale Huang

The critical issue of the durability of marine concrete lies in the continuous penetration and rapid enrichment of corrosive ions. Here a new ion transfer inhibitor, as TIA, with calcium silicate hydrate (C-S-H) interfacial affinity and hydrophobicity is proposed through insights from molecular dynamics into the percolation behavior of the ion solution in C-S-H nano-channels and combined with molecular design concepts. One side of the TIA can be adsorbed on the surface of the cement matrix and can form clusters of corrosive ions to block the gel pores so as to resist the ion solution percolation process. Its other side is structured as a hydrophobic carbon chain, similar to a door hinge, which can stick to the matrix surface smoothly before the erosion solution is percolated. It can then change into a perpendicular chain shape to reduce the percolation channel’s diameter and thereby inhibit the percolation when ions meet the inhibitor. Therefore, once the erosion solution contacts TIA, it can quickly chelate with calcium ions and erosion ions at the interface to form clusters and compact pores. In addition, the water absorption, chloride migration coefficient, and chloride content of concrete samples decreased significantly after adding TIA, proving that TIA can effectively enhance the durability of cement-based materials. The structure–activity relationship of ion transfer that is proposed can provide new ideas for solving the critical problems of durability of cement-based materials and polymer molecular design.


2022 ◽  
Author(s):  
Max Birch ◽  
David Cortés-Ortuño ◽  
Kai Litzius ◽  
Sebastian Wintz ◽  
Frank Schulz ◽  
...  

Abstract Research into practical applications of magnetic skyrmions, nanoscale solitons with interesting topological and transport properties [1,2], has traditionally focused on two dimensional (2D) thin-film systems[3,4]. However, the recent observation of novel three dimensional (3D) skyrmion-like structures, such as hopfions [5], skyrmion strings (SkS) [6-9], skyrmion bundles [11] and skyrmion braids [12], motivates the investigation of new designs, aiming to exploit the third spatial dimension for more compact and higher performance spintronic devices in 3D or curvilinear geometries [13-15]. A crucial requirement of such device schemes is the control of the 3D magnetic structures via charge or spin currents, which has yet to be experimentally observed. In this work, we utilise real-space imaging to investigate the dynamics of a 3D SkS within a nanowire of Co8Zn9Mn3 at room temperature. Utilising single, nanoscale current pulses, we demonstrate current-induced nucleation of a single SkS, and a toggle-like positional switching of an individual Bloch point at the end of a SkS. The observations highlight the possibility to locally manipulate 3D topological spin textures, opening up a range of design concepts for future 3D spintronic devices.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 449
Author(s):  
Daniel Lang ◽  
Donald W. Radford

This study proposes a novel methodology to combine topology optimization and ply draping simulation to partition composite structures, improve structural performance, select materials, and enable more accurate representations of cost- and weight-efficient manufacturable designs. The proposed methodology is applied to a structure as a case study to verify that the methodology is effective. One design concept is created by subjecting the structure to a kinematic ply draping simulation to inform the partitioning of the structure, improve drapability and performance, and reduce structural defects. A second design concept is created that assumes that plies are draped over the entire structural geometry, forming an integral design. The two design concepts’ topologies are subsequently optimized to specify ideal material and ply geometries to minimize mass and reduce costs. The results indicate that the partitioned structure has a 19% lower mass and 15% lower material costs than the integral design. The two designs produced with the new methodology are also compared against two control designs created to emulate previously published methodologies that have not incorporated ply draping simulations. This demonstrates that neglecting the effects of ply draping produces topology optimization solutions that under-predict the mass of a structure by 26% and costs by 38%.


2022 ◽  
Vol 6 ◽  
Author(s):  
Karin Harbusch ◽  
Ina Steinmetz

Leichte Sprache (LS; easy-to-read German) defines a variety of German characterized by simplified syntactic constructions and a small vocabulary. It provides barrier-free information for a wide spectrum of people with cognitive impairments, learning difficulties, and/or a low level of literacy in the German language. The levels of difficulty of a range of syntactic constructions were systematically evaluated with LS readers as part of the recent LeiSA project (Bock, 2019). That study identified a number of constructions that were evaluated as being easy to comprehend but which fell beyond the definition of LS. We therefore want to broaden the scope of LS to include further constructions that LS readers can easily manage and that they might find useful for putting their thoughts into words. For constructions not considered in the LeiSA study, we performed a comparative treebank study of constructions attested to in a collection of 245 LS documents from a variety of sources. Employing the treebanks TüBa-D/S (also called VERBMOBIL) and TüBa-D/Z, we compared the frequency of such constructions in those texts with their incidence in spoken and written German sources produced without the explicit goal of facilitating comprehensibility. The resulting extension is called Extended Leichte Sprache (ELS). To date, text in LS has generally been produced by authors proficient in standard German. In order to enable text production by LS readers themselves, we developed a computational linguistic system, dubbed ExtendedEasyTalk. This system supports LS readers in formulating grammatically correct and semantically coherent texts covering constructions in ELS. This paper outlines the principal components: (1) a natural-language paraphrase generator that supports fast and correct text production while taking readership-design aspects into account, and (2) explicit coherence specifications based on Rhetorical Structure Theory (RST) to express the communicative function of sentences. The system’s writing-workshop mode controls the options in (1) and (2). Mandatory questions generated by the system aim to teach the user when and how to consider audience-design concepts. Accordingly, users are trained in text production in a similar way to elementary school students, who also tend to omit audience-design cues. Importantly, we illustrate in this paper how to make the dialogues of these components intuitive and easy to use to avoid overtaxing the user. We also report the results of our evaluation of the software with different user groups.


Author(s):  
Peter M. Miklavčič ◽  
John Siu ◽  
Esteban Wright ◽  
Alex Debrecht ◽  
Hesam Askari ◽  
...  

The authors explore the possibility that near-earth, rubble pile asteroids might be used as habitats for human settlement by increasing their rotation to produce spin gravity. Using previously published scaling by Maindl et al. and studies of asteroid populations, it is shown that there is no class of hollowed body that would survive the spin-up process on its own without additional reinforcement. Large solid-rock asteroids (diameter D > 10 km) would not have the tensile strength to withstand the required rotation rates and would fracture and break apart. Smaller asteroids, being ‘rubble piles’, have little tensile strength and would quickly disperse. The possibility of containing the asteroid mass using higher-strength materials like carbon nanofiber is instead considered. It is found that a moderate tensile strength container can maintain the integrity of a large spinning cylinder composed of dispersed asteroid regolith. The research extends the range of possible asteroid habitat candidates, since it may become feasible to construct habitats from the more numerous smaller bodies, including NEAs (Near Earth Asteroids). The required tensile strength of the container material scales with habitat radius and thickness and is ∼ 200 MPa for a starting asteroid body of radius 300 m that is spun up to provide 0.3 g⊕ while increasing its radius to 3 km and maintaining a rubble and regolith shield thickness of 2 m to protect against cosmic rays. Ambient solar power can be harvested to aid in spin-up and material processing.


2022 ◽  
pp. 155-168
Author(s):  
Ralph A. Gigliotti ◽  
Sunita Kramer ◽  
Dee Magnoni

Representing distinct parts of Rutgers University—academic innovation and experiential learning, organizational leadership and strategy, and the university library—the authors approach this discussion of agility and cross-university partnerships from three distinct vantage points. Despite different administrative portfolios and scholarly and professional interests, the authors collectively view this moment as one of profound opportunity for our institution and for higher education more broadly. Purposeful collaborations have contributed to new and innovative partnerships that will be discussed in this chapter, including a new learning community for interested members of the New Brunswick Libraries—The Hatchery, a dedicated design thinking and ideation studio centrally located in the Archibald S. Alexander Library—and varying points of convergence with the Innovation, Design, and Entrepreneurship Academy (IDEA) that integrates design and entrepreneurial thinking and leadership development into the Rutgers student experience.


Author(s):  
Saba Siddiki ◽  
Cali Curley

The study of policy design has been of long-standing interest to policy scholars. Recent surveys of policy design scholarship acknowledge two main pathways along which it has developed; one in which the process of policy designing is emphasised and one in which the output of this policy designing process – for example, policy content – is emphasised. As part of a survey of extant research, this article discusses how scholars guided by different orientations to studying policy design are addressing and measuring common policy design concepts and themes, and offers future research opportunities. The article also provides a platform for considering how insights stemming from different orientations of policy design research can be integrated and mapped within the broader public policy process. Finally, the article raises the question of whether a framework that links different conceptualisations of policy design within the policy process might help to advance the field.


Author(s):  
Mohamed Ibren ◽  
Amelda Dianne Andan ◽  
Waqar Asrar ◽  
Erwin Sulaeman

A review on passive acoustic control of airfoil self-noise by means of porous trailing edge is presented. Porous surfaces are defined using various terms such as porosity, permeability, resistivity, porosity constant, dimensionless permeability, flow control severity and tortuosity. The primary purpose of this review paper is to provide key findings regarding the sources and mitigation techniques of self-induced noise generated by airfoils. In addition, various parametric design concepts were presented, which are critically important for porous-airfoil design specifications. Most research focus on experimentation with some recent efforts on numerical simulations. Detail study on flow topology is required to fully understand the unsteady flow nature. In general, noise on the airfoil surface is linked to the vortex shedding, instabilities on the surface, as well as feedback mechanism. In addition, acoustic scattering can be minimized by reducing extent of the porous region from the trailing edge while increasing resistivity. Moreover, blowing might also be another means of reducing noise near the trailing edge. Ultimately, understanding the flow physics well provides a way to unveil the unknowns in self-induced airfoil noise generation, mitigation, and control.


2021 ◽  
Vol 20 ◽  
pp. 117
Author(s):  
Phanchalath Suriyothin

Chudhadhuj Royal Residence is a historically significant place, located on Si Chang island where a vast landscape area covers both coastal and mountainous areas. Its context connects natural landscape and culture which can be termed a cultural landscape in a holistic. The researcher would like to describe the link between the design criteria and the concepts of the cultural heritage conservation and some identities of the place to meet the function of each area in designing luminaires. The objective of this article is to demonstrate the design process of landscape luminaires for walkway. The design of prototype luminaires consists of a lamppost, a bollard, and a bollard with perforated patterns. Visual design elements and principles with the design concepts were applied to these luminaires. The image of luminaires and the effect of light of each prototype were designed, developed, and tested on-site both day and night-time. The questionnaires displaying computer-simulated images in the actual context were used for an assessment by experts from various design and architectural conservation fields. The results show that these luminaires respond to architectural conservation and identities of the place both day and night-time. The prototype luminaires were improved according to the comments of the experts. Consequently, these luminaires were granted three design patents. Ultimately, the designed luminaires and the lighting master plan were applied to the landscape improvement project of the Chudhadhuj Royal Residence, operated by the Fine Arts Department. This project can be an example of architectural conservation for a cultural heritage site in the future. 


Sign in / Sign up

Export Citation Format

Share Document