Towards a European Supercomputing Research Infrastructure; OSIRIS: a state-of-the art numerical infrastructure for full scale kinetic modelling of laboratory and astrophysical plasmas with Petascale systems; High Performance Computing for extremely demanding climate modelling; Petascaling of real-world applications: the case of OCTOPUS; Performance evaluation of HP SFS striping parameters; Performance Study of Hyper-Threading Technology on the LUSITANIA Supercomputer;

Ibergrid 2010 ◽  
2011 ◽  
pp. 245-280
2021 ◽  
Author(s):  
Jason Thompson ◽  
Haifeng Zhao ◽  
Sachith Seneviratne ◽  
Rohan Byrne ◽  
Rajith Vidanaarachichi ◽  
...  

The sudden onset of the COVID-19 global health crisis and as-sociated economic and social fall-out has highlighted the im-portance of speed in modeling emergency scenarios so that ro-bust, reliable evidence can be placed in policy and decision-makers’ hands as swiftly as possible. For computational social scientists who are building complex policy models but who lack ready access to high-performance computing facilities, such time-pressure can hinder effective engagement. Popular and ac-cessible agent-based modeling platforms such as NetLogo can be fast to develop, but slow to run when exploring broad param-eter spaces on individual workstations. However, while deploy-ment on high-performance computing (HPC) clusters can achieve marked performance improvements, transferring models from workstations to HPC clusters can also be a technically challenging and time-consuming task. In this paper we present a set of generic templates that can be used and adapted by NetLogo users who have access to HPC clusters but require ad-ditional support for deploying their models on such infrastruc-ture. We show that model run-time speed improvements of be-tween 200x and 400x over desktop machines are possible using 1) a benchmark ‘wolf-sheep predation’ model in addition to 2) an example drawn from our own work modeling the spread of COVID-19 in Victoria, Australia. We describe how a focus on improving model speed is non-trivial for model development and discuss its practical importance for improved policy and de-cision-making in the real world. We provide all associated doc-umentation in a linked git repository.


2013 ◽  
Vol 28 (4) ◽  
pp. 1041-1055 ◽  
Author(s):  
Piyush Mehrotra ◽  
Jahed Djomehri ◽  
Steve Heistand ◽  
Robert Hood ◽  
Haoqiang Jin ◽  
...  

2014 ◽  
pp. 513-532
Author(s):  
Rasit O. Topaloglu ◽  
Swati R. Manjari ◽  
Saroj K. Nayak

Interconnects in semiconductor integrated circuits have shrunk to nanoscale sizes. This size reduction requires accurate analysis of the quantum effects. Furthermore, improved low-resistance interconnects need to be discovered that can integrate with biological and nanoelectronic systems. Accurate system-scale simulation of these quantum effects is possible with high-performance computing (HPC), while high cost and poor feasibility of experiments also suggest the application of simulation and HPC. This chapter introduces computational nanoelectronics, presenting real-world applications for the simulation and analysis of nanoscale and molecular interconnects, which may provide the connection between molecules and silicon-based devices. We survey computational nanoelectronics of interconnects and analyze four real-world case studies: 1) using graphical processing units (GPUs) for nanoelectronic simulations; 2) HPC simulations of current flow in nanotubes; 3) resistance analysis of molecular interconnects; and 4) electron transport improvement in graphene interconnects. In conclusion, HPC simulations are promising vehicles to advance interconnects and study their interactions with molecular/biological structures in support of traditional experimentation.


Sign in / Sign up

Export Citation Format

Share Document