Design, Development and Electromagnetic Analysis of a Linear Switched Reluctance Motor for Automatic Door Systems of Railway Carriages

Author(s):  
V.G. Sampath ◽  
K. Abhishek ◽  
N.C. Lenin

Day in, day out millions of people all around the world use public transportation systems. Within a metropolis, local rail transport is usually the only cheap and efficient way to get from one place to another. This is making new demands on the rail-bound mass transit. The door system needs to be robust, reliable, maintainable, safe and unaffected by the environment in order to guarantee an efficient train service. Because of round the clock operation of these trains, it is difficult to maintain the door systems regularly. They also get exposed to harsh environment like rain, sunlight and rough handling which may lead to malfunction. Safety is a very important constraint in any mass transit system and any malfunction in the door system can lead to severe mishap. Considering all the above constraints, we are proposing Linear Switched Reluctance Motor (LSRM) based door systems for railway carriages. The phase independent nature of LSRM makes it the best choice for door systems application as it can be made to operate even if any phase fails to work. This paper presents a clear design guide for a longitudinal flux single sided LSRM. The design parameters have been verified using two dimensional finite element analysis (2D-FEA). Finally a prototype has been built and tested. Test results imply the features of LSRM that make it a strong candidate for door systems of railway carriages.

Author(s):  
Lenin N C ◽  
Arumugam R

This paper presents the realization and design of a linear switched reluctance motor (LSRM) with a new stator structure. One of the setbacks in the LSRM family is the presence of high force ripple leads to vibration and acoustic noise. The proposed structure provides a smooth force profile with reduced force ripple. Finite element analysis (FEA) is used to predict the force and other relevant parameters.A frequency spectrum analysis of the force profile using the fast Fourier transform (FFT) is presented.The FEA and experimental results of this paper prove that LSRMs are one of the strong candidates for linear propulsion drives.


Sign in / Sign up

Export Citation Format

Share Document