Improved Genetic Algorithm Based on Simulated Annealing and Quantum Computing Strategy for Mining Association Rules

2010 ◽  
Vol 5 (11) ◽  
Author(s):  
Dongsheng Liu
2010 ◽  
Vol 34-35 ◽  
pp. 927-931
Author(s):  
Jun Jie Cen ◽  
Guo Hong Gao ◽  
Ying Jun Wang

Association rule is one of the important models of Web mining. By analyzing the topology of web site, this paper brings forward an efficient genetic simulated annealing association rules method.It applies genetic algorithm,incremental mining technology to trace users access behavior and optimizes association rules,and forecast capable association rules which improves its precision.Finally, this paper gives out the data analysis of experiment and summarizes the characteristics of genetic mining.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
He Tian ◽  
Guoqiang Wang ◽  
Kangkang Sun ◽  
Zeren Chen ◽  
Chuliang Yan ◽  
...  

Dynamic unbalance force is an important factor affecting the service life of scrap metal shredders (SMSs) as the product of mass error. Due to the complexity of hammerheads arrangement, it is difficult to take all the parts of the hammerhead into account in the traditional methods. A novel optimization algorithm combining genetic algorithm and simulated annealing algorithm is proposed to improve the dynamic balance of scrap metal shredders. The optimization of hammerheads and fenders on SMS in this paper is considered as a multiple traveling salesman problem (MTSP), which is a kind of NP-hard problem. To solve this problem, an improved genetic algorithm (IGA) combined with the global optimization characteristics of genetic algorithm (GA) and the local optimal solution of simulated annealing algorithm (SA) is proposed in this paper, which adopts SA in the process of selecting subpopulations. The optimization results show that the resultant force of the shredder central shaft by using IGA is less than the traditional metaheuristic algorithm, which greatly improves the dynamic balance of the SMS. Validated via ADAMS simulation, the results are in good agreement with the theoretical optimization analysis.


2014 ◽  
Vol 543-547 ◽  
pp. 1119-1122
Author(s):  
Pei Pei Chen ◽  
Bao Mei Qiu ◽  
Hao Ba

Parallel test task scheduling is always complex and difficult to optimize. Aiming at this problem, an improved Genetic Simulated Annealing Algorithm based on Petri net is posed to. At first, a Petri net model is established for the system, then the transition sequence is used as task scheduling sequence set path. Genetic Algorithm is introduced in order to get the optimal path. In the process of search, the sequence will be able to stimulate changes as chromosomes, selection, crossover and mutation. In order to prevent premature convergence of the algorithm appears, into the phenomenon of local optimal solution, the individual needs simulated annealing operation, and finally, we can get the shortest time to complete the test task scheduling sequence.


2020 ◽  
Vol 12 (5) ◽  
pp. 1946 ◽  
Author(s):  
Danlian Li ◽  
Qian Cao ◽  
Min Zuo ◽  
Fei Xu

In order to reduce the distribution cost of fresh food logistics and achieve the goal of green distribution at the same time, the Green Fresh Food Logistics with Heterogeneous Fleet Vehicle Route Problem (GFLHF-VRP) model is established. Based on the particularity of the model, an improved genetic algorithm called Genetic Algorithm with Adaptive Simulated Annealing Mutation (GAASAM) is proposed in which the mutation operation is upgraded to a simulated annealing mutation operation and its parameters are adjusted by the adaptive operation. The experimental results show that the proposed GAASAM can effectively solve the vehicle routing problem of the proposed model, achieve better performance than the genetic algorithm, and avoid falling into a local optimal trap. The distribution routes obtained by GAASAM are with lower total distribution cost, and achieve the goal of green distribution in which energy, fuel consumption and carbon emissions are reduced at the same time. On the other hand, the proposed GFLHF-VRP and GAASAM can provide a reliable distribution route plan for fresh food logistics enterprises with multiple types of distribution vehicles in real life, which can further reduce the distribution cost and achieve a greener and more environment-friendly distribution solution. The results of this study also provide a managerial method for fresh food logistics enterprises to effectively arrange the distribution work with more social responsibility.


Sign in / Sign up

Export Citation Format

Share Document