An Improved Intelligent Ant Colony Algorithm for the Reliability Optimization Problem in Cyber-Physical Systems

2014 ◽  
Vol 9 (1) ◽  
Author(s):  
Shiliang Luo ◽  
Lianglun Cheng ◽  
Bin Ren ◽  
Quanmin Zhu
2015 ◽  
Vol 11 (2) ◽  
pp. 186-201 ◽  
Author(s):  
Maryam Daei ◽  
S. Hamid Mirmohammadi

Purpose – The interest in the ability to detect damage at the earliest possible stage is pervasive throughout the civil engineering over the last two decades. In general, the experimental techniques for damage detection are expensive and require that the vicinity of the damage is known and readily accessible; therefore several methods intend to detect damage based on numerical model and by means of minimum experimental data about dynamic properties or response of damaged structures. The paper aims to discuss these issues. Design/methodology/approach – In this paper, the damage detection problem is formulated as an optimization problem such as to obtain the minimum difference between the numerical and experimental variables, and then a modified ant colony optimization (ACO) algorithm is proposed for solving this optimization problem. In the proposed algorithm, the structural damage is detected by using dynamically measured flexibility matrix, since the flexibility matrix of the structure can be estimated from only the first few modes. The continuous version of ACO is employed as a probabilistic technique for solving this computational problem. Findings – Compared to classical methods, one of the main strengths of this meta-heuristic method is the generally better robustness in achieving global optimum. The efficiency of the proposed algorithm is illustrated by numerical examples. The proposed method enables the deduction of the extent and location of structural damage, while using short computational time and resulting good accuracy. Originality/value – Finding accurate results by means of minimum experimental data, while using short computational time is the final goal of all researches in the structural damage detection methods. In this paper, it gains by applying flexibility matrix in the definition of objective function, and also via using continuous ant colony algorithm as a powerful meta-heuristic techniques in the constrained nonlinear optimization problem.


2015 ◽  
Vol 713-715 ◽  
pp. 1761-1764
Author(s):  
Feng Kai Xu

In order to achieve a low cost and low exhaust pollution in logistics distribution path. In view of the shortages of existing genetic algorithm and ant colony algorithm which have the characteristics of some limitations, such as ant colony algorithm's convergence slow, easy going, the characteristics of such as genetic algorithm premature convergence in the process of path optimization, process complex, the paper proposed the improved artificial fish swarm algorithm in order to solve logistics route optimization problem. At last, through simulation experiment, the improved artificial fish swarm algorithm is proved correct and effective.


2013 ◽  
Vol 711 ◽  
pp. 816-821
Author(s):  
Zhi Ping Hou ◽  
Feng Jin ◽  
Qin Jian Yuan ◽  
Yong Yi Li

Vehicle Routing Problem (VRP) is a typical combinatorial optimization problem. A new type of bionic algorithm-ant colony algorithm is very appropriate to solve Vehicle Routing Problem because of its positive feedback, robustness, parallel computing and collaboration features. In view of the taxi route optimization problem, this article raised the issue of the control of the taxi, by using the Geographic Information System (GIS), through the establishment of the SMS platform and reasonable taxi dispatch control center, combining ant colony algorithm to find the most nearest no-load taxi from the passenger, and giving the no-load taxi the best path to the passenger. Finally this paper use Ant Colony laboratory to give the simulation. By using this way of control, taxis can avoid the no-load problem effectively, so that the human and material resources can also achieve savings.


Sign in / Sign up

Export Citation Format

Share Document