scholarly journals Analysis of a disease transmission model with two groups of infectives

2002 ◽  
Vol 9 (1) ◽  
pp. 119-126 ◽  
Author(s):  
M. R. Razvan
2009 ◽  
Vol 39 (2) ◽  
pp. 936-941 ◽  
Author(s):  
Jean Jules Tewa ◽  
Jean Luc Dimi ◽  
Samuel Bowong

2020 ◽  
Vol 38 (8) ◽  
pp. 857-869
Author(s):  
Jason Gordon ◽  
Oliver Darlington ◽  
Phil McEwan ◽  
Matthew Lumley ◽  
Amer Taie ◽  
...  

Author(s):  
Prabir Panja ◽  
Shyamal Kumar Mondal ◽  
Joydev Chattopadhyay

AbstractIn this paper, a malaria disease transmission model has been developed. Here, the disease transmission rates from mosquito to human as well as human to mosquito and death rate of infected mosquito have been constituted by two variabilities: one is periodicity with respect to time and another is based on some control parameters. Also, total vector population is divided into two subpopulations such as susceptible mosquito and infected mosquito as well as the total human population is divided into three subpopulations such as susceptible human, infected human and recovered human. The biologically feasible equilibria and their stability properties have been discussed. Again, the existence condition of the disease has been illustrated theoretically and numerically. Hopf-bifurcation analysis has been done numerically for autonomous case of our proposed model with respect to some important parameters. At last, a optimal control problem is formulated and solved using Pontryagin’s principle. In numerical simulations, different possible combination of controls have been illustrated including the comparisons of their effectiveness.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Deqiong Ding ◽  
Xueping Wang ◽  
Xiaohua Ding

1990 ◽  
Vol 28 (3) ◽  
pp. 257-270 ◽  
Author(s):  
S. Busenberg ◽  
P. van den Driessche

1998 ◽  
Vol 150 (2) ◽  
pp. 131-151 ◽  
Author(s):  
Lourdes Esteva ◽  
Cristobal Vargas

2020 ◽  
Vol Volume 32 - 2019 - 2020 ◽  
Author(s):  
Nicolas Bacaër ◽  
Claude Lobry ◽  
Tewfik Sari

International audience Wir studieren die Wahrscheinlichkeit des Aussterbens eines linearen Geburts- und Todesprozesses mit mehreren Typen in einer periodischen Umgebung, wenn die Periode groß ist. Diese Wahrscheinlichkeit hängt von der Jahreszeit ab und zeigt eine Diskontinuität im Zusammenhang mit einem "Canard" in einem langsam-schnellen dynamischen System. Der Diskontinuitätspunkt wird in einem Beispiel mit zwei Typen genau bestimmt. Dieses Beispiel kommt von einem Modell für eine Krankheit, die durch Vektoren übertragen wird. We study the probability of extinction of a population modelled by a linear birth-and-death process with several types in a periodic environment when the period is large compared to other time scales. This probability depends on the season and may present a sharp jump in relation to a "canard" in a slow-fast dynamical system. The point of discontinuity is determined precisely in an example with two types of individuals related to a vector-borne disease transmission model. On s'intéresse à la probabilité d'extinction d'un processus linéaire de naissance et de mort avec plusieurs types dans un environnement périodique dans la limite d'une période très grande. Cette probabilité dépend de la saison et peut présenter à la limite une discontinuité en lien avec un canard dans un système dynamique lent-rapide. On détermine précisément le point de discontinuité dans un exemple avec deux types d'individus provenant d'un modèle de transmission d'une maladie à vecteurs.


Sign in / Sign up

Export Citation Format

Share Document