scholarly journals Hemorrhagic fever in Saudi Arabia: challenge to public health, effective management and future considerations

2020 ◽  
Vol 20 (3) ◽  
pp. 1153-1163
Author(s):  
Taha A Kumosani ◽  
Abdulrahman L Al-Malki ◽  
Syed S Razvi ◽  
Maha J Balgoon ◽  
Mohammed Kaleem ◽  
...  

Background: Viral hemorrhagic fevers (VHF) refers to a group of febrile illnesses caused by different viruses that result in high mortality in animals and humans. Many risk factors like increased human-animal interactions, climate change, increased mobility of people and limited diagnostic facility have contributed to the rapid spread of VHF. Materials: The history of VHFs in the Saudi Arabian Peninsula has been documented since the 19th century, in which many outbreaks have been reported from the southwestern region of Saudi Arabia. Despite presence of regional network of experts and technical organizations, which expedite support and respond during outbreaks, there are some more challenges that need to be addressed immediately. Gaps in funding, exhaustive and inclusive response plans and improved surveillance systems are some areas of concern in the region which can be dealt productively. This review primarily focusses on the hem- orrhagic fevers that are caused by three most common viruses namely, the Alkhurma hemorrhagic fever virus, Rift valley fever virus, and Dengue fever virus. Conclusion: In summary, effective vector control, health education, possible use of vaccine and concerted synchronized efforts between different government organizations and private research institutions will help in planning effective out- break-prevention and response strategies in future. Keywords: Viral fever; hemorrhagic fever (VHF); Saudi Arabia; challenges; management; future considerations.

2011 ◽  
Vol 92 (11) ◽  
pp. 2467-2484 ◽  
Author(s):  
Cheryl T. Walter ◽  
John N. Barr

The family Bunyaviridae of segmented, negative-stranded RNA viruses includes over 350 members that infect a bewildering variety of animals and plants. Many of these bunyaviruses are the causative agents of serious disease in their respective hosts, and are classified as emerging viruses because of their increased incidence in new populations and geographical locations throughout the world. Emerging bunyaviruses, such as Crimean–Congo hemorrhagic fever virus, tomato spotted wilt virus and Rift Valley fever virus, are currently attracting great interest due to migration of their arthropod vectors, a situation possibly linked to climate change. These and other examples of continued emergence suggest that bunyaviruses will probably continue to pose a sustained global threat to agricultural productivity, animal welfare and human health. The threat of emergence is particularly acute in light of the lack of effective preventative or therapeutic treatments for any of these viruses, making their study an important priority. This review presents recent advances in the understanding of the bunyavirus life cycle, including aspects of their molecular, cellular and structural biology. Whilst special emphasis is placed upon the emerging bunyaviruses, we also describe the extensive body of work involving model bunyaviruses, which have been the subject of major contributions to our overall understanding of this important group of viruses.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 769
Author(s):  
Khaoula Zouaghi ◽  
Ali Bouattour ◽  
Hajer Aounallah ◽  
Rebecca Surtees ◽  
Eva Krause ◽  
...  

Crimean-Congo hemorrhagic fever virus (CCHFV, Nairoviridae family) and Rift Valley fever virus (RVFV, Phenuiviridae family) are zoonotic vector-borne pathogens with clinical relevance worldwide. Our study aimed to determine seroprevalences of these viruses and potential risk factors among livestock (cattle, sheep, and goats) in Tunisia. Sera were tested for antibodies against CCHFV (n = 879) and RVFV (n = 699) using various enzyme-linked immunosorbent assays (ELISAs) and indirect immunofluorescence assays (IIFA). The overall seroprevalence of IgG antibodies was 8.6% (76/879) and 2.3% (16/699) against CCHFV and RVFV, respectively. For CCHF seropositivity bioclimatic zones and breed were potential risk factors for the three tested animal species; while the season was associated with cattle and sheep seropositivity, tick infestation was associated with cattle and goats seropositivity and age as a risk factor was only associated with cattle seropositivity. Age and season were significantly associated with RVFV seropositivity in sheep. Our results confirm the circulation of CCHFV and RVFV in Tunisia and identified the principal risk factors in ruminants. This knowledge could help to mitigate the risk of ruminant infections and subsequently also human infections.


Intervirology ◽  
2014 ◽  
Vol 57 (5) ◽  
pp. 300-310 ◽  
Author(s):  
Tariq A. Madani ◽  
Esam I. Azhar ◽  
El-Tayeb M.E. Abuelzein ◽  
Moujahed Kao ◽  
Hussein M.S. Al-Bar ◽  
...  

2015 ◽  
Vol 112 (19) ◽  
pp. 6021-6026 ◽  
Author(s):  
Normand Cyr ◽  
Cynthia de la Fuente ◽  
Lauriane Lecoq ◽  
Irene Guendel ◽  
Philippe R. Chabot ◽  
...  

Rift Valley fever virus (RVFV) is a single-stranded RNA virus capable of inducing fatal hemorrhagic fever in humans. A key component of RVFV virulence is its ability to form nuclear filaments through interactions between the viral nonstructural protein NSs and the host general transcription factor TFIIH. Here, we identify an interaction between a ΩXaV motif in NSs and the p62 subunit of TFIIH. This motif in NSs is similar to ΩXaV motifs found in nucleotide excision repair (NER) factors and transcription factors known to interact with p62. Structural and biophysical studies demonstrate that NSs binds to p62 in a similar manner as these other factors. Functional studies in RVFV-infected cells show that the ΩXaV motif is required for both nuclear filament formation and degradation of p62. Consistent with the fact that the RVFV can be distinguished from otherBunyaviridae-family viruses due to its ability to form nuclear filaments in infected cells, the motif is absent in the NSs proteins of otherBunyaviridae-family viruses. Taken together, our studies demonstrate that p62 binding to NSs through the ΩXaV motif is essential for degrading p62, forming nuclear filaments and enhancing RVFV virulence. In addition, these results show how the RVFV incorporates a simple motif into the NSs protein that enables it to functionally mimic host cell proteins that bind the p62 subunit of TFIIH.


Sign in / Sign up

Export Citation Format

Share Document