yellow fever virus
Recently Published Documents


TOTAL DOCUMENTS

963
(FIVE YEARS 260)

H-INDEX

71
(FIVE YEARS 10)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Fábio Alves Olímpio ◽  
Luiz Fábio Magno Falcão ◽  
Marcos Luiz Gaia Carvalho ◽  
Jeferson da Costa Lopes ◽  
Caio Cesar Henriques Mendes ◽  
...  

Yellow fever (YF) is a pansystemic disease caused by the yellow fever virus (YFV), the prototype species of the family Flaviviridae and genus Flavivirus, and has a highly complex host-pathogen relationship, in which endothelial dysfunction reflects viral disease tropism. In this study, the in situ endothelial response was evaluated. Liver tissue samples were collected from 21 YFV-positive patients who died due to the disease and five flavivirus-negative controls who died of other causes and whose hepatic parenchyma architecture was preserved. Immunohistochemical analysis of tissues in the hepatic parenchyma of YF cases showed significantly higher expression of E-selectin, P-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and very late antigen-4 in YFV-positive cases than in flavivirus-negative controls. These results indicate that endothelium activation aggravates the inflammatory response by inducing the expression of adhesion molecules that contribute to the rolling, recruitment, migration, and construction of the inflammatory process in the hepatic parenchyma in fatal YF cases.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Filipe Vieira Santos de Abreu ◽  
Cecilia Siliansky de Andreazzi ◽  
Maycon Sebastião Alberto Santos Neves ◽  
Patrícia Soares Meneguete ◽  
Mário Sérgio Ribeiro ◽  
...  

Abstract Background Yellow fever virus (YFV) is an arbovirus that, despite the existence of a safe and effective vaccine, continues to cause outbreaks of varying dimensions in the Americas and Africa. Between 2017 and 2019, Brazil registered un unprecedented sylvatic YFV outbreak whose severity was the result of its spread into zones of the Atlantic Forest with no signals of viral circulation for nearly 80 years. Methods To investigate the influence of climatic, environmental, and ecological factors governing the dispersion and force of infection of YFV in a naïve area such as the landscape mosaic of Rio de Janeiro (RJ), we combined the analyses of a large set of data including entomological sampling performed before and during the 2017–2019 outbreak, with the geolocation of human and nonhuman primates (NHP) and mosquito infections. Results A greater abundance of Haemagogus mosquitoes combined with lower richness and diversity of mosquito fauna increased the probability of finding a YFV-infected mosquito. Furthermore, the analysis of functional traits showed that certain functional groups, composed mainly of Aedini mosquitoes which includes Aedes and Haemagogus mosquitoes, are also more representative in areas where infected mosquitoes were found. Human and NHP infections were more common in two types of landscapes: large and continuous forest, capable of harboring many YFV hosts, and patches of small forest fragments, where environmental imbalance can lead to a greater density of the primary vectors and high human exposure. In both, we show that most human infections (~ 62%) occurred within an 11-km radius of the finding of an infected NHP, which is in line with the flight range of the primary vectors. Conclusions Together, our data suggest that entomological data and landscape composition analyses may help to predict areas permissive to yellow fever outbreaks, allowing protective measures to be taken to avoid human cases. Graphical Abstract


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262312
Author(s):  
Lawrence Henry Ofosu-Appiah ◽  
Dodzi Kofi Amelor ◽  
Bright Ayensu ◽  
Ernest Akyereko ◽  
Nafisah Issah Rabiwu ◽  
...  

Yellow fever is endemic in Ghana and outbreaks occur periodically. The prodromal signs due to Yellow Fever Virus (YFV) infection are non-specific, making clinical signs unreliable as the sole criteria for diagnosis. Accurate laboratory confirmation of suspected yellow fever cases is therefore vital in surveillance programs. Reporting of ELISA IgM testing results by laboratories can delay due to late arrival of samples from the collection sites as well as limited availability of ELISA kits. In this study, the diagnostic performance characteristics of a rapid immunochromatographic Standard Q Yellow Fever IgM test kit (SD Biosensor) was evaluated for the rapid diagnosis of Yellow Fever infection in Ghana. A panel of 275 sera, comprising 81 confirmed YFV positives and 194 negatives were re-tested in this study using the Standard Q Yellow Fever IgM test kit. Using the CDC/WHO Yellow Fever IgM capture ELISA as a benchmark, the sensitivity, specificity and accuracy of the Standard Q Yellow Fever test kit were 96.3%, 97.9% and 97.5%, respectively. The false positivity rate was 5.1% and there was no cross-reactivity when the Standard Q Yellow Fever test kit was tested against dengue, malaria and hepatitis B and C positive samples. In addition, inter-reader variability and invalid rate were both zero. The results indicate that the diagnostic performance of the Standard Q Yellow Fever IgM test kit on serum or plasma is comparable to the serum IgM detection by ELISA and can be used as a point of care rapid diagnostic test kit for YFV infection in endemic areas.


2022 ◽  
Vol 16 (1) ◽  
pp. e0010019
Author(s):  
Sabrina L. Li ◽  
André L. Acosta ◽  
Sarah C. Hill ◽  
Oliver J. Brady ◽  
Marco A. B. de Almeida ◽  
...  

Background Yellow fever (YF) is an arboviral disease which is endemic to Brazil due to a sylvatic transmission cycle maintained by infected mosquito vectors, non-human primate (NHP) hosts, and humans. Despite the existence of an effective vaccine, recent sporadic YF epidemics have underscored concerns about sylvatic vector surveillance, as very little is known about their spatial distribution. Here, we model and map the environmental suitability of YF’s main vectors in Brazil, Haemagogus spp. and Sabethes spp., and use human population and NHP data to identify locations prone to transmission and spillover risk. Methodology/Principal findings We compiled a comprehensive set of occurrence records on Hg. janthinomys, Hg. leucocelaenus, and Sabethes spp. from 1991–2019 using primary and secondary data sources. Linking these data with selected environmental and land-cover variables, we adopted a stacked regression ensemble modelling approach (elastic-net regularized GLM, extreme gradient boosted regression trees, and random forest) to predict the environmental suitability of these species across Brazil at a 1x1 km resolution. We show that while suitability for each species varies spatially, high suitability for all species was predicted in the Southeastern region where recent outbreaks have occurred. By integrating data on NHP host reservoirs and human populations, our risk maps further highlight municipalities within the region that are prone to transmission and spillover. Conclusions/Significance Our maps of sylvatic vector suitability can help elucidate potential locations of sylvatic reservoirs and be used as a tool to help mitigate risk of future YF outbreaks and assist in vector surveillance. Furthermore, at-risk regions identified from our work could help disease control and elucidate gaps in vaccination coverage and NHP host surveillance.


Author(s):  
Denise Haslwanter ◽  
Gorka Lasso ◽  
Anna Z. Wec ◽  
Nathália Dias Furtado ◽  
Lidiane Menezes Souza Raphael ◽  
...  

2021 ◽  
Vol 80 (04) ◽  
pp. 136-141
Author(s):  
Julieta A. SICHES ◽  
Pablo E. BERROZPE ◽  
Gustavo C. ROSSI ◽  
Oscar D. SALOMÓN ◽  
Juan J. GARCÍA

Haemagogus leucocelaenus (Diptera: Culicidae) is considered the primary vector of yellow fever virus (Flaviviridae) in wild environments in South America. Previous research has defined Hg. leucocelaenus as a wild species with phytotelmata-type breeding sites. The objective of this study was to report the temporal and space occurrence of Hg. leucocelaenus at the microscale in the wild-periurban fringe through a systematic and spatially stratified sampling using 81 ovitraps between April 2019 and February 2 020 in the locality of Puerto Iguazú, Argentina. Of the total ovitraps, eight were positive for Hg. leucocelaenus, six in the wild environment and two in the periurban environment. Regarding the time distribution, 98.5% of the occurrence was concentrated in November and December 2019 towards the beginning of the rainy season. The results confirm the habitat plasticity of Hg. leucocelaenus and establish the aptitude of artificial containers as a methodology in monitoring studies, since they illustrate the potential of wild populations to deposit fertile eggs in them at least up to 300 m from the wild-periurban fringe. This work is a contribution to determine the temporal and space risk of yellow fever virus transmission in the region, based on the distribution patterns of this species as a function to the ecotone associated with forest borders and climatic variables.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tamirat Bekele Beressa ◽  
Serawit Deyno ◽  
Andrew G. Mtewa ◽  
Namuli Aidah ◽  
Naasson Tuyiringire ◽  
...  

Background: Viruses cause various human diseases, some of which become pandemic outbreaks. This study synthesized evidence on antiviral medicinal plants in Africa which could potentially be further studied for viral infections including Coronavirus disease 2019 (COVID-19) treatment.Methods: PUBMED, CINAHIL, Scopus, Google Scholar, and Google databases were searched through keywords; antiviral, plant, herb, and Africa were combined using “AND” and “OR”. In-vitro studies, in-vivo studies, or clinical trials on botanical medicine used for the treatment of viruses in Africa were included.Results: Thirty-six studies were included in the evidence synthesis. Three hundred and twenty-eight plants were screened for antiviral activities of which 127 showed noteworthy activities against 25 viral species. These, were Poliovirus (42 plants), HSV (34 plants), Coxsackievirus (16 plants), Rhinovirus (14plants), Influenza (12 plants), Astrovirus (11 plants), SARS-CoV-2 (10 plants), HIV (10 plants), Echovirus (8 plants), Parvovirus (6 plants), Semiliki forest virus (5 plants), Measles virus (5 plants), Hepatitis virus (3 plants), Canine distemper virus (3 plants), Zika virus (2 plants), Vesicular stomatitis virus T2 (2 plants). Feline herpesvirus (FHV-1), Enterovirus, Dengue virus, Ebola virus, Chikungunya virus, Yellow fever virus, Respiratory syncytial virus, Rift Valley fever virus, Human cytomegalovirus each showed sensitivities to one plant.Conclusion: The current study provided a list of African medicinal plants which demonstrated antiviral activities and could potentially be candidates for COVID-19 treatment. However, all studies were preliminary and in vitro screening. Further in vivo studies are required for plant-based management of viral diseases.


Author(s):  
Fábio Alves Olimpio ◽  
Luiz Fábio Magno Falcão ◽  
Marcos Luiz Gaia Carvalho ◽  
Jeferson da Costa Lopes ◽  
Caio Cesar Henriques Mendes ◽  
...  

Yellow fever (YF) is a pansystemic disease caused by the yellow fever virus (YFV), the prototype species of the family Flaviviridae and genus Flavivirus, and has a highly complex host-pathogen relationship, in which endothelial dysfunction reflects viral disease tropism. In this study, the in situ endothelial response was evaluated. Liver tissue samples were collected from 21 YFV-positive patients who died due to the disease and five flavivirus-negative controls who died of other causes and whose hepatic parenchyma architecture was preserved. Immunohistochemical analysis of tissues in the hepatic parenchyma of YF cases showed significantly higher expression of E-selectin, P-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and very late antigen-4 in YFV-positive cases than in flavivirus-negative controls. These results indicate that endothelium activation aggravates the inflammatory response by inducing the expression of adhesion molecules that contribute to the rolling, recruitment, migration, and construction of the inflammatory process in the hepatic parenchyma in fatal YF cases.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 18
Author(s):  
Vinicius Pinho dos Reis ◽  
Markus Keller ◽  
Katja Schmidt ◽  
Rainer Günter Ulrich ◽  
Martin Hermann Groschup

The Flavivirus genus includes a number of important viruses that are pathogenic to humans and animals and are responsible for outbreaks across the globe. Integrins, a family of heterodimeric transmembrane molecules expressed in all nucleated cells mediate critical functions of cell physiology and cell cycle. Integrins were previously postulated to be involved in flavivirus entry and to modulate flavivirus replication efficiency. In the present study, mouse embryonic fibroblasts (MEF), lacking the expression of αVβ3 integrin (MEF-αVβ3−/−), were infected with four different flaviviruses, namely yellow fever virus (YFV), West Nile virus (WNV), Usutu virus (USUV) and Langat virus (LGTV). The effects of the αVβ3 integrin absence in double-knockout MEF-αVβ3−/− on flavivirus binding, internalization and replication were compared to the respective wild-type cells. Binding to the cell surface for all four flaviviruses was not affected by the ablation of αVβ3 integrin, whereas internalization of USUV and WNV was slightly affected by the loss of αVβ3 integrin expression. Most interestingly, the deletion of αVβ3 integrin strongly impaired replication of all flaviviruses with a reduction of up to 99% on virus yields and a strong reduction on flavivirus anti-genome RNA synthesis. In conclusion, our results demonstrate that αVβ3 integrin expression in flavivirus-susceptible cell lines enhances the flavivirus replication.


Sign in / Sign up

Export Citation Format

Share Document