scholarly journals Assessment of Genetic Diversity for Stem Rust and Stripe Rust Resistance in an International Wheat Nursery Using Phenotypic and Molecular Technologies

2021 ◽  
Vol 20 (1) ◽  
pp. 1-27
Author(s):  
Bosco Chemayek ◽  
Urmil K. Bansal ◽  
Hanif Miah ◽  
William W. Wagoire ◽  
Harbans S. Bariana

The objective of this study was to assess diversity for stem rust and stripe rust resistance in an international wheat screening nursery under greenhouse conditions using pathotypes with known avirulence/ virulence profiles. A set of 95 entries of an international wheat screening nursery collected from material generated by staff of the International Maize and Wheat Improvement Centre (CIMMYT) was tested against seven Australian Pgt and five Pst pathotypes through artificial inoculation under the greenhouse conditions using standard procedures. Ten all-stage stem rust resistance genes (Sr8a, Sr8b, Sr9b, Sr12, Sr17, Sr23, Sr24, Sr30, Sr31 and Sr38) and seven all-stage stripe rust resistance genes (Yr3, Yr4, Yr6, Yr9, Yr17, Yr27 and Yr34) were postulated either singly or in combinations based on seedling responses of test entries against pathotypes differing in virulence for commonly deployed genes. Sr30 and Sr38 were the most common stem rust resistance genes in this nursery. The Sr38-linked stripe rust resistance gene Yr17 was present in high proportion. The presence of rust resistance genes Sr24, Sr31/Yr9, Sr38/Yr17 and Yr4 were confirmed using the closely linked molecular markers. The adult plant resistance (APR) genes Sr2 and Lr34/Yr18/Sr57 were detected using linked molecular markers csSr2 and csLV34, respectively. Genotypes carrying combinations of stem rust and stripe rust resistance were identified for use as donor sources in breeding programs.

Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 497 ◽  
Author(s):  
Mandeep S. Randhawa ◽  
Navtej S. Bains ◽  
Virinder S. Sohu ◽  
Parveen Chhuneja ◽  
Richard M. Trethowan ◽  
...  

Three rust diseases namely; stem rust caused by Puccinia graminis f. sp. tritici (Pgt), leaf rust caused by Puccinia triticina (Pt), and stripe rust caused by Puccinia striiformis f. sp. tritici (Pst), are the most common fungal diseases of wheat (Triticum aestivum L.) and cause significant yield losses worldwide including Australia. Recently characterized stripe rust resistance genes Yr51 and Yr57 are effective against pre- and post-2002 Pst pathotypes in Australia. Similarly, stem rust resistance genes Sr22, Sr26, and Sr50 are effective against the Pgt pathotype TTKSK (Ug99) and its derivatives in addition to commercially important Australian pathotypes. Effectiveness of these genes make them good candidates for combining with known pleiotropic adult plant resistance (PAPR) genes to achieve durable resistance against three rust pathogens. This study was planned to transfer rust resistance genes Yr51, Yr57, Sr22, Sr26, and Sr50 into two Australian (Gladius and Livingston) and two Indian (PBW550 and DBW17) wheat cultivars through marker assisted selection (MAS). These cultivars also carry other rust resistance genes: Gladius carries Lr37/Yr17/Sr38 and Sr24/Lr24; Livingston carries Lr34/Yr18/Sr57, Lr37/Yr17/Sr38, and Sr2; PBW550 and DBW17 carry Lr34/Yr18/Sr57 and Lr26/Yr9/Sr31. Donor sources of Yr51 (AUS91456), Yr57 (AUS91463), Sr22 (Sr22/3*K441), Sr26 (Sr26 WA1), and Sr50 (Dra-1/Chinese Spring ph1b/2/3* Gabo) were crossed with each of the recurrent parents to produce backcross progenies. Markers linked to Yr51 (sun104), Yr57 (gwm389 and BS00062676), Sr22 (cssu22), Sr26 (Sr26#43), and Sr50 (Sr50-5p-F3, R2) were used for their MAS and markers csLV34 (Lr34/Yr18/Sr57), VENTRIUP-LN2 (Lr37/Yr17/Sr38), Sr24#12 (Sr24/Lr24), and csSr2 (Sr2) were used to select genes present in recurrent parents. Progenies of selected individuals were grown and selected under field conditions for plant type and adult plant rust responses. Final selections were genotyped with the relevant markers. Backcross derivatives of these genes were distributed to breeding companies for use as resistance donors.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4882 ◽  
Author(s):  
Xiaofeng Xu ◽  
Depeng Yuan ◽  
Dandan Li ◽  
Yue Gao ◽  
Ziyuan Wang ◽  
...  

Wheat stem rust caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn. (Pgt), is a major disease that has been effectively controlled using resistance genes. The appearance and spread of Pgt races such as Ug99, TKTTF, and TTTTF, which are virulent to most stem rust-resistant genes currently deployed in wheat breeding programs, renewed the interest in breeding cultivars resistant to wheat stem rust. It is therefore important to investigate the levels of resistance or vulnerability of wheat cultivars to Pgt races. Resistance to Pgt races 21C3CTHQM, 34MKGQM, and 34C3RTGQM was evaluated in 136 Chinese wheat cultivars at the seedling stage. A total of 124 cultivars (91.2%) were resistant to the three races. Resistance genes Sr2, Sr24, Sr25, Sr26, Sr31, and Sr38 were analyzed using molecular markers closely linked to them, and 63 of the 136 wheat cultivars carried at least one of these genes: 21, 25, and 28 wheat cultivars likely carried Sr2, Sr31, and Sr38, respectively. Cultivars “Kehan 3” and “Jimai 22” likely carried Sr25. None of the cultivars carried Sr24 or Sr26. These cultivars with known stem rust resistance genes provide valuable genetic material for breeding resistant wheat cultivars.


Crop Science ◽  
2013 ◽  
Vol 53 (3) ◽  
pp. 755-764 ◽  
Author(s):  
Amy N. Bernardo ◽  
Robert L. Bowden ◽  
Matthew N. Rouse ◽  
Maria S. Newcomb ◽  
David S. Marshall ◽  
...  

2013 ◽  
Vol 73 (3) ◽  
pp. 314
Author(s):  
N. R. Nagaraja ◽  
Anupam Singh ◽  
J. K. Pallavi ◽  
J. B. Sharma ◽  
G. P. Singh ◽  
...  

1998 ◽  
Vol 88 (2) ◽  
pp. 171-176 ◽  
Author(s):  
J. Q. Liu ◽  
J. A. Kolmer

Canadian wheat cvs. Pasqua and AC Taber were examined genetically to determine the number and identity of stem rust resistance genes in both. The two cultivars were crossed with stem rust susceptible line RL6071, and sets of random F6 lines were developed from each cross. The F6 lines, parents, and tester lines with single stem rust resistance genes were grown in a field rust nursery, inoculated with a mixture of stem and leaf rust races, and evaluated for rust resistance. The same wheat lines were tested by inoculation with specific stem rust races in seedling tests to postulate which Sr genes were segregating in the F6 lines. Segregation of F6 lines indicated that Pasqua had three genes that conditioned field resistance to stem rust and had seedling genes Sr5, Sr6, Sr7a, Sr9b, and Sr12. Leaf rust resistance gene Lr34, which is in Pasqua, was associated with adult-plant stem rust resistance in the segregating F6 lines. Adult-plant gene Sr2 was postulated to condition field resistance in AC Taber, and seedling genes Sr9b, Sr11, and Sr12 also were postulated to be in AC Taber.


Sign in / Sign up

Export Citation Format

Share Document