scholarly journals Integrated nutrient transport modelling with respect to the implementation of the European WFD: The Weiße Elster Case Study, Germany

Water SA ◽  
2020 ◽  
Vol 34 (4) ◽  
pp. 490 ◽  
Author(s):  
Michael Rode ◽  
Bernd Klauer ◽  
Daniel Petry ◽  
Martin Volk ◽  
Gerald Wenk ◽  
...  
1989 ◽  
Vol 16 (5) ◽  
pp. 615-626 ◽  
Author(s):  
M. D. Haug ◽  
D. J. L. Forgie ◽  
S. L. Barbour

This paper presents the design concept for a case study sanitary landfill on a site that would not normally have been approved owing to the presence of a high water table. In this design, the base of the landfill was intentionally placed below the water table. A massive 2.5 m wide, 2.5 m high cutoff wall and a 0.3 m thick liner with hydraulic conductivities of approximately 5 × 10−10 m/s were constructed of recompacted glacial till to limit both groundwater intrusion into the landfill and leachate migration out of the landfill. In this case study, the landfill base was placed below the water table to (i) provide a relatively inexpensive source of cover material and (ii) use the hydrodynamic gradient from the high water table to help contain the leachate. Finite element modelling of the seepage and contaminant transport, for alternate designs for lined and unlined landfills placed above and below the groundwater table, is shown to confirm a previous, less-sophisticated, estimation that placing a lined landfill below the groundwater table has definite advantages in reducing both leachate seepage and contaminant transport. Key words: landfill, leachate, hydrodynamic containment, liners, compacted earth cutoff walls, seepage and contaminant transport modelling.


2013 ◽  
Vol 13 (17) ◽  
pp. 8569-8584 ◽  
Author(s):  
M. Boichu ◽  
L. Menut ◽  
D. Khvorostyanov ◽  
L. Clarisse ◽  
C. Clerbaux ◽  
...  

Abstract. Depending on the magnitude of their eruptions, volcanoes impact the atmosphere at various temporal and spatial scales. The volcanic source remains a major unknown to rigorously assess these impacts. At the scale of an eruption, the limited knowledge of source parameters, including time variations of erupted mass flux and emission profile, currently represents the greatest issue that limits the reliability of volcanic cloud forecasts. Today, a growing number of satellite and remote sensing observations of distant plumes are becoming available, bringing indirect information on these source terms. Here, we develop an inverse modelling approach combining satellite observations of the volcanic plume with an Eulerian regional chemistry-transport model (CHIMERE) to characterise the volcanic SO2 emissions during an eruptive crisis. The May 2010 eruption of Eyjafjallajökull is a perfect case study to apply this method as the volcano emitted substantial amounts of SO2 during more than a month. We take advantage of the SO2 column amounts provided by a vast set of IASI (Infrared Atmospheric Sounding Interferometer) satellite images to reconstruct retrospectively the time series of the mid-tropospheric SO2 flux emitted by the volcano with a temporal resolution of ~2 h, spanning the period from 1 to 12 May 2010. We show that no a priori knowledge on the SO2 flux is required for this reconstruction. The initialisation of chemistry-transport modelling with this reconstructed source allows for reliable simulation of the evolution of the long-lived tropospheric SO2 cloud over thousands of kilometres. Heterogeneities within the plume, which mainly result from the temporal variability of the emissions, are correctly tracked over a timescale of a week. The robustness of our approach is also demonstrated by the broad similarities between the SO2 flux history determined by this study and the ash discharge behaviour estimated by other means during the phases of high explosive activity at Eyjafjallajökull in May 2010. Finally, we show how a sequential IASI data assimilation allows for a substantial improvement in the forecasts of the location and concentration of the plume compared to an approach assuming constant flux at the source. As the SO2 flux is an important indicator of the volcanic activity, this approach is also of interest to monitor poorly instrumented volcanoes from space.


2005 ◽  
Vol 5 (1) ◽  
pp. 23-37 ◽  
Author(s):  
D. Schaub ◽  
A. K. Weiss ◽  
J. W. Kaiser ◽  
A. Petritoli ◽  
A. Richter ◽  
...  

Abstract. High tropospheric NO2 amounts are occasionally detected by space-borne spectrometers above cloudy scenes. For monitoring of near-ground air pollution such data are not directly applicable because clouds shield the highly polluted planetary boundary layer (PBL). We present a method based on trajectories which implicitly estimates the additional sub-cloud NO2 distribution in order to model concentrations at ground stations. The method is applied to a transboundary pollution transport episode which led to high NO2 vertical tropospheric column densities (VTCs) over middle Europe observed by the Global Ozone Monitoring Experiment (GOME) instrument above clouds on 17 February 2001. The case study shows that pollution originally residing near the ground in central Germany, the Ruhr area and adjacent parts of the Netherlands and Belgium has been advected to higher tropospheric levels by a passing weather front. Combining the above-cloud NO2 VTCs with trajectory information covering the GOME columns and including their sub-cloud part yields an estimate of the total NO2 distribution within the tropospheric columns. The highly polluted air masses are then traced by forward trajectories starting from the GOME columns to move further to the Alpine region and their impact there is assessed. Considering ground-based in-situ measurements in the Alpine region, we conclude that for this episode, at least 50% of the NO2 concentration recorded at the sites can be attributed to transboundary transport during the frontal passage. This study demonstrates the potential of using NO2 VTCs from GOME detected above clouds when combined with transport modelling.


2013 ◽  
Vol 13 (3) ◽  
pp. 6553-6588 ◽  
Author(s):  
M. Boichu ◽  
L. Menut ◽  
D. Khvorostyanov ◽  
L. Clarisse ◽  
C. Clerbaux ◽  
...  

Abstract. Depending on the magnitude of their eruptions, volcanoes impact the atmosphere at various temporal and spatial scales. The volcanic source remains a major unknown to rigorously assess these impacts. At the scale of an eruption, the limited knowledge of source parameters, including time-variations of erupted mass flux and emission profile, currently represents the greatest issue that limits the reliability of volcanic cloud forecasts. Today, a growing number of satellite and remote sensing observations of distant plumes are becoming available, bringing indirect information on these source terms. Here, we develop an inverse modeling approach combining satellite observations of the volcanic plume with an Eulerian regional chemistry-transport model (CHIMERE) to better characterise the volcanic SO2 emissions during an eruptive crisis. The May 2010 eruption of Eyjafjallajökull is a perfect case-study to apply this method as the volcano emitted substantial amounts of SO2 during more than a month. We take advantage of the SO2 column amounts provided by a vast set of IASI (Infrared Atmospheric Sounding Interferometer) satellite images to reconstruct retrospectively the time-series of the mid-tropospheric SO2 flux emitted by the volcano with a temporal resolution of ~2 h, spanning the period from 1 to 12 May 2010. The initialisation of chemistry-transport modelling with this reconstructed source allows for a reliable simulation of the evolution of the long-lived tropospheric SO2 cloud over thousands of kilometres. Heterogeneities within the plume, which mainly result from the temporal variability of the emissions, are correctly tracked over a time scale of a week. The robustness of our approach is also demonstrated by the broad similarities between the SO2 flux history determined by this study and the ash discharge behaviour estimated by other means during the phases of high explosive activity at Eyjafjallajökull in May 2010. Finally, we show how a sequential IASI data assimilation allows for a substantial improvement in the forecasts of the location and concentration of the plume compared to an approach assuming constant flux at the source. As the SO2 flux is an important indicator of the volcanic activity, this approach is also of interest to monitor poorly instrumented volcanoes from space.


2011 ◽  
Vol 56 (2) ◽  
pp. 268-287 ◽  
Author(s):  
Nanée Chahinian ◽  
Marie-George Tournoud ◽  
Jean-Louis Perrin ◽  
Bernadette Picot

2006 ◽  
Vol 94 (3) ◽  
pp. 453-460 ◽  
Author(s):  
U. Kizil ◽  
J.A. Lindley ◽  
G. Padmanabhan

Sign in / Sign up

Export Citation Format

Share Document