Solutions of Fourth-Order Self-Conjugate Problems. Oscillation Properties

Author(s):  
John W. Hooker ◽  
William T. Patula

AbstractFor the fourth-order linear difference equation Δ4un−2 = bn un, with bn > 0 for all n, generalized zeros are defined, following Hartman [5], and two theorems are proved concerning separation of zeros of linearly independent solutions. Some preliminary results deal with non-oscillation and asymptotic behavior of solutions of this equation for various types of initial conditions. Finally, recessive solutions are defined, and results are obtained analogous to known results for recessive solutions of second-order difference equations.


1969 ◽  
Vol 21 ◽  
pp. 460-465
Author(s):  
Kurt Kreith

In this paper, we seek to determine the greatest lower bound of the essential spectrum of self-adjoint singular differential operators of the form1where 0 ≦ x < ∞. In the event that this bound is + ∞, our results will yield criteria for the discreteness of the spectrum of (1).Such bounds have been established by Friedrichs (3) for Sturm-Liouville operators of the formand our techniques will be closely related to those of (3). However, instead of studying the solutions of2directly, we shall exploit the intimate connection between the infimum of the essential spectrum of (1) and the oscillation properties of (2).


Author(s):  
A. A. Vladimirov ◽  
A. A. Shkalikov

Abstract The connection between the number of internal zeros of nontrivial solutions to fourth-order self-adjoint boundary value problems and the inertia index of these problems is studied. We specify the types of problems for which such a connection can be established. In addition, we specify the types of problems for which a connection between the inertia index and the number of internal zeros of the derivatives of nontrivial solutions can be established. Examples demonstrating the effectiveness of the proposed new approach to an oscillatory problem are considered.


Sign in / Sign up

Export Citation Format

Share Document