Motor imagery practice and skilled performance in sport

2019 ◽  
pp. 61-76
Author(s):  
Aidan Moran ◽  
Helen O’Shea
Author(s):  
Aidan Moran ◽  
Nick Sevdalis ◽  
Lauren Wallace

At first glance, there are certain similarities between performance in surgery and that in competitive sports. Clearly, both require exceptional gross and fine motor ability and effective concentration skills, and both are routinely performed in dynamic environments, often under time constraints. On closer inspection, however, crucial differences emerge between these skilled domains. For example, surgery does not involve directly antagonistic opponents competing for victory. Nevertheless, analogies between surgery and sport have contributed to an upsurge of research interest in the psychological processes that underlie expertise in surgical performance. Of these processes, perhaps the most frequently investigated in recent years is that of motor imagery (MI) or the cognitive simulation skill that enables us to rehearse actions in our imagination without engaging in the physical movements involved. Research on motor imagery training (MIT; also called motor imagery practice, MIP) has important theoretical and practical implications. Specifically, at a theoretical level, hundreds of experimental studies in psychology have demonstrated the efficacy of MIT/MIP in improving skill learning and skilled performance in a variety of fields such as sport and music. The most widely accepted explanation of these effects comes from “simulation theory,” which postulates that executed and imagined actions share some common neural circuits and cognitive mechanisms. Put simply, imagining a skill activates some of the brain areas and neural circuits that are involved in its actual execution. Accordingly, systematic engagement in MI appears to “prime” the brain for optimal skilled performance. At the practical level, as surgical instruction has moved largely from an apprenticeship model (the so-called see one, do one, teach one approach) to one based on simulation technology and practice (e.g., the use of virtual reality equipment), there has been a corresponding growth of interest in the potential of cognitive training techniques (e.g., MIT/MIP) to improve and augment surgical skills and performance. Although these cognitive training techniques suffer both from certain conceptual confusion (e.g., with regard to the clarity of key terms) and inadequate empirical validation, they offer considerable promise in the quest for a cost-effective supplementary training tool in surgical education. Against this background, it is important for researchers and practitioners alike to explore the cognitive psychological factors (such as motor imagery) that underlie surgical skill learning and performance.


2006 ◽  
Author(s):  
Andrew B. Slifkin
Keyword(s):  

2012 ◽  
Author(s):  
Bonnie E. Johnson ◽  
Evan W. Patton ◽  
Wayne D. Gray ◽  
Donald F. Morrison
Keyword(s):  

2011 ◽  
Vol 29 (supplement) ◽  
pp. 352-377 ◽  
Author(s):  
Seon Hee Jang ◽  
Frank E Pollick

The study of dance has been helpful to advance our understanding of how human brain networks of action observation are influenced by experience. However previous studies have not examined the effect of extensive visual experience alone: for example, an art critic or dance fan who has a rich experience of watching dance but negligible experience performing dance. To explore the effect of pure visual experience we performed a single experiment using functional Magnetic Resonance Imaging (fMRI) to compare the neural processing of dance actions in 3 groups: a) 14 ballet dancers, b) 10 experienced viewers, c) 12 novices without any extensive dance or viewing experience. Each of the 36 participants viewed short 2-second displays of ballet derived from motion capture of a professional ballerina. These displays represented the ballerina as only points of light at the major joints. We wished to study the action observation network broadly and thus included two different types of display and two different tasks for participants to perform. The two different displays were: a) brief movies of a ballet action and b) frames from the ballet movies with the points of lights connected by lines to show a ballet posture. The two different tasks were: a) passively observe the display and b) imagine performing the action depicted in the display. The two levels of display and task were combined factorially to produce four experimental conditions (observe movie, observe posture, motor imagery of movie, motor imagery of posture). The set of stimuli used in the experiment are available for download after this paper. A random effects ANOVA was performed on brain activity and an effect of experience was obtained in seven different brain areas including: right Temporoparietal Junction (TPJ), left Retrosplenial Cortex (RSC), right Primary Somatosensory Cortex (S1), bilateral Primary Motor Cortex (M1), right Orbitofrontal Cortex (OFC), right Temporal Pole (TP). The patterns of activation were plotted in each of these areas (TPJ, RSC, S1, M1, OFC, TP) to investigate more closely how the effect of experience changed across these areas. For this analysis, novices were treated as baseline and the relative effect of experience examined in the dancer and experienced viewer groups. Interpretation of these results suggests that both visual and motor experience appear equivalent in producing more extensive early processing of dance actions in early stages of representation (TPJ and RSC) and we hypothesise that this could be due to the involvement of autobiographical memory processes. The pattern of results found for dancers in S1 and M1 suggest that their perception of dance actions are enhanced by embodied processes. For example, the S1 results are consistent with claims that this brain area shows mirror properties. The pattern of results found for the experienced viewers in OFC and TP suggests that their perception of dance actions are enhanced by cognitive processes. For example, involving aspects of social cognition and hedonic processing – the experienced viewers find the motor imagery task more pleasant and have richer connections of dance to social memory. While aspects of our interpretation are speculative the core results clearly show common and distinct aspects of how viewing experience and physical experience shape brain responses to watching dance.


2013 ◽  
Vol 133 (3) ◽  
pp. 635-641
Author(s):  
Genzo Naito ◽  
Lui Yoshida ◽  
Takashi Numata ◽  
Yutaro Ogawa ◽  
Kiyoshi Kotani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document