scholarly journals Usefulness of myocardial positron emission tomography/nuclear imaging in Takotsubo cardiomyopathy

2014 ◽  
Vol 6 (7) ◽  
pp. 502 ◽  
Author(s):  
Marzia Testa
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Han Feng ◽  
Xiaobo Wang ◽  
Jian Chen ◽  
Jing Cui ◽  
Tang Gao ◽  
...  

Glucose homeostasis plays a key role in numerous fundamental aspects of life, and its dysregulation is associated with many important diseases such as cancer. The atypical glucose metabolic phenomenon, known as the Warburg effect, has been recognized as a hallmark of cancer and serves as a promising target for tumor specific imaging. At present, 2-deoxy-2-[18F]fluoro-glucose (18F-FDG)-based positron emission tomography/computed tomography (PET/CT) represented the state-of-the-art radionuclide imaging technique for this purpose. The powerful impact of 18F-FDG has prompted intensive research efforts into other glucose-based radiopharmaceuticals for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. Currently, glucose and its analogues have been labeled with various radionuclides such as 99mTc, 111In, 18F, 68Ga, and 64Cu and have been successfully investigated for tumor metabolic imaging in many preclinical studies. Moreover, 99mTc-ECDG has advanced into its early clinical trials and brings a new era of tumor imaging beyond 18F-FDG. In this review, preclinical and early clinical development of glucose-based radiopharmaceuticals for tumor metabolic imaging will be summarized.


2019 ◽  
Vol 12 ◽  
pp. 175628481983620 ◽  
Author(s):  
Arno Kornberg ◽  
Helmut Friess

Hepatocellular carcinoma (HCC) is a global health issue with increasing incidence and high mortality rate. Depending on the tumor load and extent of underlying liver cirrhosis, aggressive surgical treatment by hepatectomy or liver transplantation (LT) may lead to cure, whereas different modalities of liver-directed locoregional or systemic tumor treatments are currently available for a noncurative approach. Apart from tumor burden and grade of liver dysfunction, assessment of prognostic relevant biological tumor aggressiveness is vitally important for establishing a promising multimodal therapeutic strategy and improving the individual treatment-related risk/benefit ratio. In recent years, an increasing body of clinical evidence has been presented that 18F-fludeoxyglucose (18F-FDG) positron emission tomography (PET), which is a standard nuclear imaging device in oncology, may serve as a powerful surrogate for tumor invasiveness and prognosis in HCC patients and, thereby, impact individual decision making on most appropriate therapy concept. This review describes the currently available data on the prognostic value of 18F-FDG PET in patients with early and advanced HCC stages and the resulting implications for treatment strategy.


2015 ◽  
Vol 44 (11) ◽  
pp. 4845-4858 ◽  
Author(s):  
David Brasse ◽  
Aline Nonat

The use of radiometal isotopes in positron emission tomography: a new success story in nuclear imaging?


Author(s):  
Kwame Anokye Amoabeng ◽  
Sanna Laurila ◽  
Luis Eduardo Juárez-Orozco ◽  
Anne Beate Langeland Marthinsen ◽  
Dariusz Moczulski ◽  
...  

Abstract Purpose Positron emission tomography (PET) is a nuclear imaging technique that uses radiotracers to visualize metabolic processes of interest across different organs, to diagnose and manage diseases, and monitor therapeutic response. This systematic review aimed to characterize the value of PET for the assessment of renal metabolism and function in subjects with non-oncological metabolic disorders. Methods This review was conducted and reported in accordance with the PRISMA statement. Research articles reporting “kidney” or “renal” metabolism evaluated with PET imaging between 1980 and 2021 were systematically searched in Medline/PubMed, Science Direct, and the Cochrane Library. Search results were exported and stored in RefWorks, the duplicates were removed, and eligible studies were identified, evaluated, and summarized. Results Thirty reports met the inclusion criteria. The majority of the studies were prospective (73.33%, n = 22) in nature. The most utilized PET radiotracers were 15O-labeled radio water (H215O, n = 14) and 18F-fluorodeoxyglucose (18F-FDG, n = 8). Other radiotracers used in at least one study were 14(R,S)-(18)F-fluoro-6-thia-heptadecanoic acid (18F-FTHA), 18F-Sodium Fluoride (18F-NaF), 11C-acetate, 68-Gallium (68Ga), 13N-ammonia (13N-NH3), Rubidium-82 (82Rb), radiolabeled cationic ferritin (RadioCF), 11C‐para-aminobenzoic acid (11C-PABA), Gallium-68 pentixafor (68Ga-Pentixafor), 2-deoxy-2-F-fluoro-d-sorbitol (F-FDS) and 55Co-ethylene diamine tetra acetic acid (55Co-EDTA). Conclusion PET imaging provides an effective modality for evaluating a range of metabolic functions including glucose and fatty acid uptake, oxygen consumption and renal perfusion. Multiple positron emitting radiolabeled racers can be used for renal imaging in clinical settings. PET imaging thus holds the potential to improve the diagnosis of renal disorders, and to monitor disease progression and treatment response.


2012 ◽  
Vol 20 ◽  
pp. 73
Author(s):  
M. Zioga ◽  
A. Nikopoulou ◽  
M. Alexandridi ◽  
D. Maintas ◽  
M. Mikeli ◽  
...  

Positron Emission Tomography (PET) has become a valuable tool with a broad spectrum of clinical applications in nuclear imaging. PET scanners can collect in vivo information from positron radiotracer distributions, which is further recon- structed to a tomographic image with the help of well established analytical or iterative algorithms. In this current work, an innovative PET image reconstruction method from raw data based on a simple mathematical model is presented. The developed technique utilizes the accumulated density distribution in a predefined voxelized volume of interest. This distribution is calculated by intersecting and weighting the two-gamma annihilation line with the specified voxels. In order to test the efficiency of the new algorithm, GEANT4/GATE simulation studies were performed. In these studies, a cylindrical PET scanner was modeled and the photon interaction points are validated on an accurate physical basis. An appropriate cylin- drical phantom with different positron radiotracers was used and the reconstructed results were compared to the original phantom.


2006 ◽  
Vol 118 (17-18) ◽  
pp. 520-520 ◽  
Author(s):  
G. Rendl ◽  
J. Altenberger ◽  
C. Pirich

Sign in / Sign up

Export Citation Format

Share Document