scholarly journals The generalized 3-connectivity of Lexicographic product graphs

2014 ◽  
Vol Vol. 16 no. 1 (Graph Theory) ◽  
Author(s):  
Xueliang Li ◽  
Yaping Mao

Graph Theory International audience The generalized k-connectivity κk(G) of a graph G, first introduced by Hager, is a natural generalization of the concept of (vertex-)connectivity. Denote by G^H and G&Box;H the lexicographic product and Cartesian product of two graphs G and H, respectively. In this paper, we prove that for any two connected graphs G and H, κ3(G^H)≥ κ3(G)|V(H)|. We also give upper bounds for κ3(G&Box; H) and κ3(G^H). Moreover, all the bounds are sharp.

2012 ◽  
Vol Vol. 14 no. 1 (Graph Theory) ◽  
Author(s):  
Hengzhe Li ◽  
Xueliang Li ◽  
Yuefang Sun

Graph Theory International audience The generalized connectivity of a graph, which was introduced by Chartrand et al. in 1984, is a generalization of the concept of vertex connectivity. Let S be a nonempty set of vertices of G, a collection \T-1, T (2), ... , T-r\ of trees in G is said to be internally disjoint trees connecting S if E(T-i) boolean AND E(T-j) - empty set and V (T-i) boolean AND V(T-j) = S for any pair of distinct integers i, j, where 1 <= i, j <= r. For an integer k with 2 <= k <= n, the k-connectivity kappa(k) (G) of G is the greatest positive integer r for which G contains at least r internally disjoint trees connecting S for any set S of k vertices of G. Obviously, kappa(2)(G) = kappa(G) is the connectivity of G. Sabidussi's Theorem showed that kappa(G square H) >= kappa(G) + kappa(H) for any two connected graphs G and H. In this paper, we prove that for any two connected graphs G and H with kappa(3) (G) >= kappa(3) (H), if kappa(G) > kappa(3) (G), then kappa(3) (G square H) >= kappa(3) (G) + kappa(3) (H); if kappa(G) = kappa(3)(G), then kappa(3)(G square H) >= kappa(3)(G) + kappa(3) (H) - 1. Our result could be seen as an extension of Sabidussi's Theorem. Moreover, all the bounds are sharp.


2020 ◽  
Vol 284 ◽  
pp. 290-300 ◽  
Author(s):  
Abel Cabrera Martínez ◽  
Suitberto Cabrera García ◽  
J.A. Rodríguez-Velázquez

2020 ◽  
Vol 282 ◽  
pp. 152-161
Author(s):  
Tianlong Ma ◽  
Jinling Wang ◽  
Mingzu Zhang ◽  
Xiaodong Liang

2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Ch. Ramprasad ◽  
P. L. N. Varma ◽  
S. Satyanarayana ◽  
N. Srinivasarao

Computational intelligence and computer science rely on graph theory to solve combinatorial problems. Normal product and tensor product of an m-polar fuzzy graph have been introduced in this article. Degrees of vertices in various product graphs, like Cartesian product, composition, tensor product, and normal product, have been computed. Complement and μ-complement of an m-polar fuzzy graph are defined and some properties are studied. An application of an m-polar fuzzy graph is also presented in this article.


2019 ◽  
Vol 263 ◽  
pp. 257-270 ◽  
Author(s):  
Magdalena Valveny ◽  
Hebert Pérez-Rosés ◽  
Juan A. Rodríguez-Velázquez

2015 ◽  
Vol 9 (1) ◽  
pp. 39-58 ◽  
Author(s):  
S. Barik ◽  
R.B. Bapat ◽  
S. Pati

Graph products and their structural properties have been studied extensively by many researchers. We investigate the Laplacian eigenvalues and eigenvectors of the product graphs for the four standard products, namely, the Cartesian product, the direct product, the strong product and the lexicographic product. A complete characterization of Laplacian spectrum of the Cartesian product of two graphs has been done by Merris. We give an explicit complete characterization of the Laplacian spectrum of the lexicographic product of two graphs using the Laplacian spectra of the factors. For the other two products, we describe the complete spectrum of the product graphs in some particular cases. We supply some new results relating to the algebraic connectivity of the product graphs. We describe the characteristic sets for the Cartesian product and for the lexicographic product of two graphs. As an application we construct new classes of Laplacian integral graphs.


Sign in / Sign up

Export Citation Format

Share Document