scholarly journals On the Laplacian spectra of product graphs

2015 ◽  
Vol 9 (1) ◽  
pp. 39-58 ◽  
Author(s):  
S. Barik ◽  
R.B. Bapat ◽  
S. Pati

Graph products and their structural properties have been studied extensively by many researchers. We investigate the Laplacian eigenvalues and eigenvectors of the product graphs for the four standard products, namely, the Cartesian product, the direct product, the strong product and the lexicographic product. A complete characterization of Laplacian spectrum of the Cartesian product of two graphs has been done by Merris. We give an explicit complete characterization of the Laplacian spectrum of the lexicographic product of two graphs using the Laplacian spectra of the factors. For the other two products, we describe the complete spectrum of the product graphs in some particular cases. We supply some new results relating to the algebraic connectivity of the product graphs. We describe the characteristic sets for the Cartesian product and for the lexicographic product of two graphs. As an application we construct new classes of Laplacian integral graphs.

2019 ◽  
Vol 35 ◽  
pp. 473-481 ◽  
Author(s):  
Shuchao Li ◽  
Shujing Wang

Let $A(G)$ and $D(G)$ denote the adjacency matrix and the diagonal matrix of vertex degrees of $G$, respectively. Define $$ A_{\alpha}(G)=\alpha D(G)+(1-\alpha)A(G) $$ for any real $\alpha\in [0,1]$. The collection of eigenvalues of $A_{\alpha}(G)$ together with multiplicities is called the $A_{\alpha}$-\emph{spectrum} of $G$. Let $G\square H$, $G[H]$, $G\times H$ and $G\oplus H$ be the Cartesian product, lexicographic product, directed product and strong product of graphs $G$ and $H$, respectively. In this paper, a complete characterization of the $A_{\alpha}$-spectrum of $G\square H$ for arbitrary graphs $G$ and $H$, and $G[H]$ for arbitrary graph $G$ and regular graph $H$ is given. Furthermore, $A_{\alpha}$-spectrum of the generalized lexicographic product $G[H_1,H_2,\ldots,H_n]$ for $n$-vertex graph $G$ and regular graphs $H_i$'s is considered. At last, the spectral radii of $A_{\alpha}(G\times H)$ and $A_{\alpha}(G\oplus H)$ for arbitrary graph $G$ and regular graph $H$ are given.


2021 ◽  
Vol 37 ◽  
pp. 416-424
Author(s):  
Ryan Munter ◽  
Travis Peters

LIGHTS OUT! is a game played on a finite, simple graph. The vertices of the graph are the lights, which may be on or off, and the edges of the graph determine how neighboring vertices turn on or off when a vertex is pressed. Given an initial configuration of vertices that are on, the object of the game is to turn all the lights out. The traditional game is played over $\mathbb{Z}_2$, where the vertices are either lit or unlit, but the game can be generalized to $\mathbb{Z}_k$, where the lights have different colors. Previously, the game was investigated on Cartesian product graphs over $\mathbb{Z}_2$. We extend this work to $\mathbb{Z}_k$ and investigate two other fundamental graph products, the direct (or tensor) product and the strong product. We provide conditions for which the direct product graph and the strong product graph are solvable based on the factor graphs, and we do so using both open and closed neighborhood switching over $\mathbb{Z}_k$.


2014 ◽  
Vol 331 ◽  
pp. 43-52 ◽  
Author(s):  
Ismael González Yero ◽  
Marko Jakovac ◽  
Dorota Kuziak ◽  
Andrej Taranenko

2012 ◽  
Vol 49 (2) ◽  
pp. 156-169 ◽  
Author(s):  
Marko Jakovac ◽  
Iztok Peterin

A b-coloring is a proper vertex coloring of a graph such that each color class contains a vertex that has a neighbor in all other color classes and the b-chromatic number is the largest integer φ(G) for which a graph has a b-coloring with φ(G) colors. We determine some upper and lower bounds for the b-chromatic number of the strong product G ⊠ H, the lexicographic product G[H] and the direct product G × H and give some exact values for products of paths, cycles, stars, and complete bipartite graphs. We also show that the b-chromatic number of Pn ⊠ H, Cn ⊠ H, Pn[H], Cn[H], and Km,n[H] can be determined for an arbitrary graph H, when integers m and n are large enough.


10.37236/2817 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Boštjan Frelih ◽  
Štefko Miklavič

A regular nonempty graph $\Gamma$ is called edge regular, whenever there exists a nonegative integer $\lambda_{\Gamma}$, such that any two adjacent vertices of $\Gamma$ have precisely $\lambda_{\Gamma}$ common neighbours. An edge regular graph $\Gamma$ with at least one pair of vertices at distance 2 is called amply regular, whenever there exists a nonegative integer $\mu_{\Gamma}$, such that any two vertices at distance 2 have precisely $\mu_{\Gamma}$ common neighbours. In this paper we classify edge regular graphs, which can be obtained as a strong product, or a lexicographic product, or a deleted lexicographic product, or a co-normal product of two graphs. As a corollary we determine which of these graphs are amply regular.


2019 ◽  
Vol 11 (05) ◽  
pp. 1950054 ◽  
Author(s):  
Durbar Maji ◽  
Ganesh Ghorai

The third leap Zagreb index of a graph [Formula: see text] is denoted as [Formula: see text] and is defined as [Formula: see text], where [Formula: see text] and [Formula: see text] are the 2-distance degree and the degree of the vertex [Formula: see text] in [Formula: see text], respectively. The first, second and third leap Zagreb indices were introduced by Naji et al. [A. M. Naji, N. D. Soner and I. Gutman, On leap Zagreb indices of graphs, Commun. Combin. Optim. 2(2) (2017) 99–117] in 2017. In this paper, the behavior of the third leap Zagreb index under several graph operations like the Cartesian product, Corona product, neighborhood Corona product, lexicographic product, strong product, tensor product, symmetric difference and disjunction of two graphs is studied.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 496
Author(s):  
Dragana Božović ◽  
Iztok Peterin

A digraph D is an efficient open domination digraph if there exists a subset S of V ( D ) for which the open out-neighborhoods centered in the vertices of S form a partition of V ( D ) . In this work we deal with the efficient open domination digraphs among four standard products of digraphs. We present a method for constructing the efficient open domination Cartesian product of digraphs with one fixed factor. In particular, we characterize those for which the first factor has an underlying graph that is a path, a cycle or a star. We also characterize the efficient open domination strong product of digraphs that have factors whose underlying graphs are uni-cyclic graphs. The full characterizations of the efficient open domination direct and lexicographic product of digraphs are also given.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yasar Nacaroglu

The sigma coindex is defined as the sum of the squares of the differences between the degrees of all nonadjacent vertex pairs. In this paper, we propose some mathematical properties of the sigma coindex. Later, we present precise results for the sigma coindices of various graph operations such as tensor product, Cartesian product, lexicographic product, disjunction, strong product, union, join, and corona product.


Author(s):  
Suguru Hiranuma ◽  
Gen Kawatani ◽  
Naoki Matsumoto

The domatic number [Formula: see text] of a graph [Formula: see text] is the maximum number of disjoint dominating sets in a dominating set partition of a graph [Formula: see text]. For any graph [Formula: see text], [Formula: see text] where [Formula: see text] is the minimum degree of [Formula: see text], and [Formula: see text] is domatically full if the equality holds, i.e., [Formula: see text]. In this paper, we characterize domatically full Cartesian products of a path of order 2 and a tree of order at least 3. Moreover, we show a characterization of the Cartesian product of a longer path and a tree of order at least 3. By using these results, we also show that for any two trees of order at least 3, the Cartesian product of them is domatically full.


Sign in / Sign up

Export Citation Format

Share Document