scholarly journals Infinite log-concavity: developments and conjectures

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Peter R. W. McNamara ◽  
Bruce E. Sagan

International audience Given a sequence $(a_k)=a_0,a_1,a_2,\ldots$ of real numbers, define a new sequence $\mathcal{L}(a_k)=(b_k)$ where $b_k=a_k^2-a_{k-1}a_{k+1}$. So $(a_k)$ is log-concave if and only if $(b_k)$ is a nonnegative sequence. Call $(a_k)$ $\textit{infinitely log-concave}$ if $\mathcal{L}^i(a_k)$ is nonnegative for all $i \geq 1$. Boros and Moll conjectured that the rows of Pascal's triangle are infinitely log-concave. Using a computer and a stronger version of log-concavity, we prove their conjecture for the $n$th row for all $n \leq 1450$. We can also use our methods to give a simple proof of a recent result of Uminsky and Yeats about regions of infinite log-concavity. We investigate related questions about the columns of Pascal's triangle, $q$-analogues, symmetric functions, real-rooted polynomials, and Toeplitz matrices. In addition, we offer several conjectures. Étant donné une suite $(a_k)=a_0,a_1,a_2,\ldots$ de nombres réels, on définit une nouvelle suite $\mathcal{L}(a_k)=(b_k)$ où $b_k=a_k^2-a_{k-1}a_{k+1}$. Alors $(a_k)$ est log-concave si et seulement si $(b_k)$ est une suite non négative. On dit que $(a_k)$ est $\textit{infiniment log-concave}$ si $\mathcal{L}^i(a_k)$ est non négative pour tout $i \geq 1$. Boros et Moll ont conjecturé que les lignes du triangle de Pascal sont infiniment log-concave. Utilisant un ordinateur et une version plus forte de log-concavité, on vérifie leur conjecture pour la $n$ième ligne, pour tout $n \leq 1450$. On peut aussi utiliser nos méthodes pour donner une preuve simple d'un résultat récent de Uminsky et Yeats à propos des régions de log-concavité infini. Reliées à ces idées, on examine des questions à propos des colonnes du triangle de Pascal, des $q$-analogues, des fonctions symétriques, des polynômes avec racines réelles, et des matrices de Toeplitz. De plus, on offre plusieurs conjectures.

2004 ◽  
Vol 13 (05) ◽  
pp. 1105-1110 ◽  
Author(s):  
YAN WU

This paper gives a simple proof for the positiveness of two important symmetric Toeplitz matrices used in communication and signal processing. It utilizes the shifting property of a so-called Uniformly Band-Restricted (UBR) function, which is the generating function for a generic functional symmetric matrix. It is shown that the functional symmetric matrix is positive definite if the UBR function is evaluated at a sequence of distinct real numbers.


2012 ◽  
Vol 96 (536) ◽  
pp. 213-220
Author(s):  
Harlan J. Brothers

Pascal's triangle is well known for its numerous connections to probability theory [1], combinatorics, Euclidean geometry, fractal geometry, and many number sequences including the Fibonacci series [2,3,4]. It also has a deep connection to the base of natural logarithms, e [5]. This link to e can be used as a springboard for generating a family of related triangles that together create a rich combinatoric object.2. From Pascal to LeibnizIn Brothers [5], the author shows that the growth of Pascal's triangle is related to the limit definition of e.Specifically, we define the sequence sn; as follows [6]:


1963 ◽  
Vol 47 (359) ◽  
pp. 57
Author(s):  
Robert Croasdale

2016 ◽  
Vol 3 (1) ◽  
pp. 1264176 ◽  
Author(s):  
Kantaphon Kuhapatanakul ◽  
Lishan Liu

2017 ◽  
Vol 9 (2) ◽  
pp. 100
Author(s):  
Luis Dias Ferreira

The product of the first $n$ terms of an arithmetic progression may be developed in a polynomial of $n$ terms. Each one of them presents a coefficient $C_{nk}$ that is independent from the initial term and the common difference of the progression. The most interesting point is that one may construct an "Arithmetic Triangle'', displaying these coefficients, in a similar way one does with Pascal's Triangle. Moreover, some remarkable properties, mainly concerning factorials, characterize the Triangle. Other related `triangles' -- eventually treated as matrices -- also display curious facts, in their linear \emph{modus operandi}, such as successive "descendances''.


Sign in / Sign up

Export Citation Format

Share Document