scholarly journals On the 2-adic order of Stirling numbers of the second kind and their differences

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Tamás Lengyel

International audience Let $n$ and $k$ be positive integers, $d(k)$ and $\nu_2(k)$ denote the number of ones in the binary representation of $k$ and the highest power of two dividing $k$, respectively. De Wannemacker recently proved for the Stirling numbers of the second kind that $\nu_2(S(2^n,k))=d(k)-1, 1\leq k \leq 2^n$. Here we prove that $\nu_2(S(c2^n,k))=d(k)-1, 1\leq k \leq 2^n$, for any positive integer $c$. We improve and extend this statement in some special cases. For the difference, we obtain lower bounds on $\nu_2(S(c2^{n+1}+u,k)-S(c2^n+u,k))$ for any nonnegative integer $u$, make a conjecture on the exact order and, for $u=0$, prove part of it when $k \leq 6$, or $k \geq 5$ and $d(k) \leq 2$. The proofs rely on congruential identities for power series and polynomials related to the Stirling numbers and Bell polynomials, and some divisibility properties.

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 144 ◽  
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

The main aim of this paper is to introduce the degenerate truncated forms of multifarious special polynomials and numbers and is to investigate their various properties and relationships by using the series manipulation method and diverse special proof techniques. The degenerate truncated exponential polynomials are first considered and their several properties are given. Then the degenerate truncated Stirling polynomials of the second kind are defined and their elementary properties and relations are proved. Also, the degenerate truncated forms of the bivariate Fubini and Bell polynomials and numbers are introduced and various relations and formulas for these polynomials and numbers, which cover several summation formulas, addition identities, recurrence relationships, derivative property and correlations with the degenerate truncated Stirling polynomials of the second kind, are acquired. Thereafter, the truncated degenerate Bernoulli and Euler polynomials are considered and multifarious correlations and formulas including summation formulas, derivation rules and correlations with the degenerate truncated Stirling numbers of the second are derived. In addition, regarding applications, by introducing the degenerate truncated forms of the classical Bernstein polynomials, we obtain diverse correlations and formulas. Some interesting surface plots of these polynomials in the special cases are provided.


Author(s):  
S. S. Singh ◽  
A. Lalchhuangliana ◽  
P. K. Saikia

In this paper, we introduced certain formulas for p-adic valuations of Stirling numbers of the second kind S(n, k) denoted by vp(S(n, k)) for an odd prime p and positive integers k such that n ≥ k. We have obtained the formulas, vp(S(n, n − a)) for a = 1, 2, 3 and vp(S(cpn, cpk )) for 1 ≤ c ≤ p − 1 and primality test of positive integer n. We have presented the results of vp(S(p2, kp)) for 2 ≤ k ≤ p − 1, 2 < p < 100 and a table of vp(S(p, k)). We have posed the following conjectures from our analysis:   1. Let p ≠ 7 be an odd prime and k be an even integer such that 0 < k < p − 1. Then                                                                                                 vp(S(p2, kp))-vp(S(p2, p(k+1)) = 3 2. If k be an integer such that 1 < k < p − 1, then the p-adic valuations satisfy                                                                                             vp(S(p2, kp)) = 5 or 6,  if k is even; 2 or 3, if k is odd for any prime p > 7. 3. For any primes p and positive integer k such that 2 ≤ k ≤ p − 1, then                                                                                                                                     vp(S( p, k )) ≤ 2.


2002 ◽  
Vol Vol. 5 ◽  
Author(s):  
Kenneth G. Monks

International audience We use Conway's \emphFractran language to derive a function R:\textbfZ^+ → \textbfZ^+ of the form R(n) = r_in if n ≡ i \bmod d where d is a positive integer, 0 ≤ i < d and r_0,r_1, ... r_d-1 are rational numbers, such that the famous 3x+1 conjecture holds if and only if the R-orbit of 2^n contains 2 for all positive integers n. We then show that the R-orbit of an arbitrary positive integer is a constant multiple of an orbit that contains a power of 2. Finally we apply our main result to show that any cycle \ x_0, ... ,x_m-1 \ of positive integers for the 3x+1 function must satisfy \par ∑ _i∈ \textbfE \lfloor x_i/2 \rfloor = ∑ _i∈ \textbfO \lfloor x_i/2 \rfloor +k. \par where \textbfO=\ i : x_i is odd \ , \textbfE=\ i : x_i is even \ , and k=|\textbfO|. \par The method used illustrates a general mechanism for deriving mathematical results about the iterative dynamics of arbitrary integer functions from \emphFractran algorithms.


2009 ◽  
Vol Vol. 11 no. 1 (Combinatorics) ◽  
Author(s):  
Charlotte Brennan ◽  
Arnold Knopfmacher

Combinatorics International audience A composition of a positive integer n is a finite sequence of positive integers a(1), a(2), ..., a(k) such that a(1) + a(2) + ... + a(k) = n. Let d be a fixed nonnegative integer. We say that we have an ascent of size d or more if a(i+1) >= a(i) + d. We determine the mean, variance and limiting distribution of the number of ascents of size d or more in the set of compositions of n. We also study the average size of the greatest ascent over all compositions of n.


2011 ◽  
Vol 07 (07) ◽  
pp. 1959-1976 ◽  
Author(s):  
VICTOR J. W. GUO ◽  
JIANG ZENG

We study divisibility properties of certain sums and alternating sums involving binomial coefficients and powers of integers. For example, we prove that for all positive integers n1,…,nm, nm+1 = n1, and any nonnegative integer r, there holds [Formula: see text] and conjecture that for any nonnegative integer r and positive integer s such that r + s is odd, [Formula: see text] where ε = ±1.


2006 ◽  
Vol Vol. 8 ◽  
Author(s):  
Tiziana Calamoneri

International audience The L(h, k)-labeling is an assignment of non negative integer labels to the nodes of a graph such that 'close' nodes have labels which differ by at least k, and 'very close' nodes have labels which differ by at least h. The span of an L(h,k)-labeling is the difference between the largest and the smallest assigned label. We study L(h, k)-labelings of cellular, squared and hexagonal grids, seeking those with minimum span for each value of k and h ≥ k. The L(h,k)-labeling problem has been intensively studied in some special cases, i.e. when k=0 (vertex coloring), h=k (vertex coloring the square of the graph) and h=2k (radio- or λ -coloring) but no results are known in the general case for regular grids. In this paper, we completely solve the L(h,k)-labeling problem on regular grids, finding exact values of the span for each value of h and k; only in a small interval we provide different upper and lower bounds.


1997 ◽  
Vol 55 (1) ◽  
pp. 19-28
Author(s):  
Bruce M. Landman ◽  
Beata Wysocka

A family 𝑐 of sequences has the r-Ramsey property if for every positive integer k, there exists a least positive integer g(r)(k) such that for every r-colouring of {1, 2, …, g(r)(k)} there is a monochromatic k-term member of 𝑐. For fixed integers m > 1 and 0 ≤ a < m, define a k-term a (mod m)-sequence to be an increasing sequence of positive integers {x1, …, xk} such that xi − xi−1 ≡ a (mod m) for i = 2, …, k. Define an m-a.p. to be an arithmetic progression where the difference between successive terms is m. Let be the collection of sequences that are either a(mod m)-sequences or m-a.p.'s. Landman and Long showed that for all m ≥ 2 and 1 ≤ a < m, has the 2-Ramsey property, and that the 2-Ramsey function , corresponding to k-term a(mod m)-sequences or n-term m-a.p.'s, has order of magnitude mkn. We show that does not have the 4-Ramsey property and that, unless m/a = 2, it does not have the 3-Ramsey property. In the case where m/a = 2, we give an exact formula for . We show that if a ≠ 0, there exist 4-colourings or 6-colourings (depending on m and a) of the positive integers which avoid 2-term monochromatic members of , but that there never exist such 3-colourings. We also give an exact formula for .


2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Charlotte Brennan ◽  
Arnold Knopfmacher

International audience A composition of a positive integer $n$ is a finite sequence of positive integers $a_1, a_2, \ldots, a_k$ such that $a_1+a_2+ \cdots +a_k=n$. Let $d$ be a fixed nonnegative integer. We say that we have an ascent of size $d$ or more at position $i$, if $a_{i+1}\geq a_i+d$. We study the average position, initial height and end height of the first ascent of size $d$ or more in compositions of $n$ as $n \to \infty$.


2016 ◽  
Vol Vol. 17 no. 3 (Combinatorics) ◽  
Author(s):  
Armend Shabani ◽  
Rexhep Gjergji

International audience A composition $\pi = \pi_1 \pi_2 \cdots \pi_m$ of a positive integer $n$ is an ordered collection of one or more positive integers whose sum is $n$. The number of summands, namely $m$, is called the number of parts of $\pi$. Using linear algebra, we determine formulas for generating functions that count compositions of $n$ with $m$ parts, according to the number of occurrences of the subword pattern $\tau$, and according to the sum, over all occurrences of $\tau$, of the first integers in their respective occurrences, where $\tau$ is any pattern of length three with exactly 2 distinct letters.


Sign in / Sign up

Export Citation Format

Share Document