scholarly journals The distribution of ascents of size d or more in compositions

2009 ◽  
Vol Vol. 11 no. 1 (Combinatorics) ◽  
Author(s):  
Charlotte Brennan ◽  
Arnold Knopfmacher

Combinatorics International audience A composition of a positive integer n is a finite sequence of positive integers a(1), a(2), ..., a(k) such that a(1) + a(2) + ... + a(k) = n. Let d be a fixed nonnegative integer. We say that we have an ascent of size d or more if a(i+1) >= a(i) + d. We determine the mean, variance and limiting distribution of the number of ascents of size d or more in the set of compositions of n. We also study the average size of the greatest ascent over all compositions of n.

2005 ◽  
Vol DMTCS Proceedings vol. AD,... (Proceedings) ◽  
Author(s):  
Charlotte Brennan ◽  
Arnold Knopfmacher

International audience We consider words or strings of characters $a_1a_2a_3 \ldots a_n$ of length $n$, where the letters $a_i \in \mathbb{Z}$ are independently generated with a geometric probability $\mathbb{P} \{ X=k \} = pq^{k-1}$ where $p+q=1$. Let $d$ be a fixed nonnegative integer. We say that we have an ascent of size $d$ or more if $a_{i+1} \geq a_i+d$. We determine the mean, variance and limiting distribution of the number of ascents of size $d$ or more in a random geometrically distributed word.


2008 ◽  
Vol 17 (4) ◽  
pp. 495-509 ◽  
Author(s):  
CHARLOTTE BRENNAN ◽  
ARNOLD KNOPFMACHER ◽  
STEPHAN WAGNER

A partition of a positive integer n is a finite sequence of positive integers a1, a2, . . ., ak such that a1+a2+ċ ċ ċ+ak=n and ai+1 ≥ ai for all i. Let d be a fixed positive integer. We say that we have an ascent of size d or more if ai+1 ≥ ai+d.We determine the mean, the variance and the limiting distribution of the number of ascents of size d or more (equivalently, the number of distinct part sizes of multiplicity d or more) in the partitions of n.


2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Charlotte Brennan ◽  
Arnold Knopfmacher

International audience A composition of a positive integer $n$ is a finite sequence of positive integers $a_1, a_2, \ldots, a_k$ such that $a_1+a_2+ \cdots +a_k=n$. Let $d$ be a fixed nonnegative integer. We say that we have an ascent of size $d$ or more at position $i$, if $a_{i+1}\geq a_i+d$. We study the average position, initial height and end height of the first ascent of size $d$ or more in compositions of $n$ as $n \to \infty$.


2012 ◽  
Vol DMTCS Proceedings vol. AQ,... (Proceedings) ◽  
Author(s):  
Patrick Bindjeme ◽  
james Allen fill

International audience In a continuous-time setting, Fill (2012) proved, for a large class of probabilistic sources, that the number of symbol comparisons used by $\texttt{QuickSort}$, when centered by subtracting the mean and scaled by dividing by time, has a limiting distribution, but proved little about that limiting random variable $Y$—not even that it is nondegenerate. We establish the nondegeneracy of $Y$. The proof is perhaps surprisingly difficult.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Tamás Lengyel

International audience Let $n$ and $k$ be positive integers, $d(k)$ and $\nu_2(k)$ denote the number of ones in the binary representation of $k$ and the highest power of two dividing $k$, respectively. De Wannemacker recently proved for the Stirling numbers of the second kind that $\nu_2(S(2^n,k))=d(k)-1, 1\leq k \leq 2^n$. Here we prove that $\nu_2(S(c2^n,k))=d(k)-1, 1\leq k \leq 2^n$, for any positive integer $c$. We improve and extend this statement in some special cases. For the difference, we obtain lower bounds on $\nu_2(S(c2^{n+1}+u,k)-S(c2^n+u,k))$ for any nonnegative integer $u$, make a conjecture on the exact order and, for $u=0$, prove part of it when $k \leq 6$, or $k \geq 5$ and $d(k) \leq 2$. The proofs rely on congruential identities for power series and polynomials related to the Stirling numbers and Bell polynomials, and some divisibility properties.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.


2006 ◽  
Vol 16 (4) ◽  
pp. 2195-2214 ◽  
Author(s):  
Michael G. B. Blum ◽  
Olivier François ◽  
Svante Janson

2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Ze Gu

A proportionally modular numerical semigroup is the set S a , b , c of nonnegative integer solutions to a Diophantine inequality of the form a x   mod   b ≤ c x , where a , b , and c are positive integers. A formula for the multiplicity of S a , b , c , that is, m S a , b , c = k b / a for some positive integer k , is given by A. Moscariello. In this paper, we give a new proof of the formula and determine a better bound for k . Furthermore, we obtain k = 1 for various cases and a formula for the number of the triples a , b , c such that k ≠ 1 when the number a − c is fixed.


2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Aubrey Blecher ◽  
Charlotte Brennan ◽  
Arnold Knopfmacher

Combinatorics International audience We consider compositions of n, i.e., sequences of positive integers (or parts) (σi)i=1k where σ1+σ2+...+σk=n. We define a maximum to be any part which is not less than any other part. The variable of interest is the size of the descent immediately following the first and the last maximum. Using generating functions and Mellin transforms, we obtain asymptotic expressions for the average size of these descents. Finally, we show with the use of a simple bijection between the compositions of n for n>1, that on average the descent after the last maximum is greater than the descent after the first.


1978 ◽  
Vol Volume 1 ◽  
Author(s):  
K Ramachandra

International audience The present paper is concerned with $\Omega$-estimates of the quantity $$(1/H)\int_{T}^{T+H}\vert(d^m/ds^m)\zeta^k(\frac{1}{2}+it)\vert dt$$ where $k$ is a positive number (not necessarily an integer), $m$ a nonnegative integer, and $(\log T)^{\delta}\leq H \leq T$, where $\delta$ is a small positive constant. The main theorems are stated for Dirichlet series satisfying certain conditions and the corollaries concerning the zeta function illustrate quite well the scope and interest of the results. %It is proved that if $2k\geq1$ and $T\geq T_0(\delta)$, then $$(1/H)\int_{T}^{T+H}\vert \zeta(\frac{1}{2}+it)\vert^{2k}dt > (\log H)^{k^2}(\log\log H)^{-C}$$ and $$(1/H)\int_{T}^{T+H} \vert\zeta'(\frac{1}{2}+it)\vert dt > (\log H)^{5/4}(\log\log H)^{-C},$$ where $C$ is a constant depending only on $\delta$.


Sign in / Sign up

Export Citation Format

Share Document