scholarly journals Combinatorial invariant theory of projective reflection groups

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Fabrizio Caselli

International audience We introduce the class of projective reflection groups which includes all complex reflection groups. We show that several aspects involving the combinatorics and the representation theory of complex reflection groups find a natural description in this wider setting. On introduit la classe des groupes de réflexions projectifs, ce qui généralise la notion de groupe engendré par des réflexions. On montre que plusieurs aspects concernant la combinatoire et la théorie des représentations des groupes de réflexions complexes trouvent une description naturelle dans ce cadre plus général.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Fabrizio Caselli ◽  
Roberta Fulci

International audience A finite subgroup $G$ of $GL(n,\mathbb{C})$ is involutory if the sum of the dimensions of its irreducible complex representations is given by the number of absolute involutions in the group, i.e. elements $g \in G$ such that $g \bar{g}=1$, where the bar denotes complex conjugation. A uniform combinatorial model is constructed for all non-exceptional irreducible complex reflection groups which are involutory including, in particular, all infinite families of finite irreducible Coxeter groups. If $G$ is a classical Weyl group this result is much refined in a way which is compatible with the Robinson-Schensted correspondence on involutions. Un sous-groupe fini $G$ de GL(n,ℂ) est dit involutoire si la somme des dimensions de ses représentations irréductibles complexes est donné par le nombre de involutions absolues dans le groupe, c'est-a-dire le nombre de éléments $g \in G$ tels que $g \bar{g}=1$, où le bar dénote la conjugaison complexe. Un modèle combinatoire uniforme est construit pour tous les groupes de réflexions complexes irréductibles qui sont involutoires, en comprenant, toutes les familles de groupes de Coxeter finis irréductibles. Si $G$ est un groupe de Weyl ce résultat peut se raffiner d'une manière compatible avec la correspondance de Robinson-Schensted sur les involutions.



2020 ◽  
Vol 3 (2) ◽  
pp. 389-432
Author(s):  
Ashish Mishra ◽  
Shraddha Srivastava


Author(s):  
Victor Reiner ◽  
Anne V. Shepler ◽  
Eric Sommers


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Riccardo Biagioli ◽  
Fabrizio Caselli

International audience Projective reflection groups have been recently defined by the second author. They include a special class of groups denoted G(r,p,s,n) which contains all classical Weyl groups and more generally all the complex reflection groups of type G(r,p,n). In this paper we define some statistics analogous to descent number and major index over the projective reflection groups G(r,p,s,n), and we compute several generating functions concerning these parameters. Some aspects of the representation theory of G(r,p,s,n), as distribution of one-dimensional characters and computation of Hilbert series of some invariant algebras, are also treated. Les groupes de réflexions projectifs ont été récemment définis par le deuxième auteur. Ils comprennent une classe spéciale de groupes notée G(r,p,s,n), qui contient tous les groupes de Weyl classiques et plus généralement tous les groupes de réflexions complexes du type G(r,p,n). Dans ce papier on définit des statistiques analogues au nombre de descentes et à l'indice majeur pour les groupes G(r,p,s,n), et on calcule plusieurs fonctions génératrices. Certains aspects de la théorie des représentations de G(r,p,s,n), comme la distribution des caractères linéaires et le calcul de la série de Hilbert de quelques algèbres d'invariants, sont aussi abordés.



2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
François Bergeron ◽  
Nicolas Borie ◽  
Nicolas M. Thiéry

arXiv : http://arxiv.org/abs/1011.3654 International audience We introduce deformations of the space of (multi-diagonal) harmonic polynomials for any finite complex reflection group of the form W=G(m,p,n), and give supporting evidence that this space seems to always be isomorphic, as a graded W-module, to the undeformed version. Nous introduisons une déformation de l'espace des polynômes harmoniques (multi-diagonaux) pour tout groupe de réflexions complexes de la forme W=G(m,p,n), et soutenons l'hypothèse que cet espace est toujours isomorphe, en tant que W-module gradué, à l'espace d'origine.



2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Christian Stump

International audience In type $A$, the $q,t$-Fuß-Catalan numbers $\mathrm{Cat}_n^{(m)}(q,t)$ can be defined as a bigraded Hilbert series of a module associated to the symmetric group $\mathcal{S}_n$. We generalize this construction to (finite) complex reflection groups and exhibit some nice conjectured algebraic and combinatorial properties of these polynomials in $q$ and $t$. Finally, we present an idea how these polynomials could be related to some graded Hilbert series of modules arising in the context of rational Cherednik algebras. This is work in progress. Dans le cas du type $A$, les $q,t$-nombres de Fuß-Catalan $\mathrm{Cat}_n^{(m)}(q,t)$ peuvent être définis comme la série de Hilbert bigraduée d'un certain module associé au groupe symétrique $\mathcal{S}_n$. Nous généralisons cette construction aux groupes de réflexion complexes (finis) et nous formulons de jolies propriétés (conjecturales) algébriques et combinatoires de ces polynômes en $q$ et $t$. Enfin, nous décrivons une idée sur la manière dont ces polynômes pourraient être liés à certaines séries de Hilbert de modules apparaissant dans le contexte des algèbres de Cherednik rationnelles. Ceci est un travail en cours.



2010 ◽  
Vol 197 ◽  
pp. 175-212
Author(s):  
Maria Chlouveraki

The Rouquier blocks of the cyclotomic Hecke algebras, introduced by Rouquier, are a substitute for the families of characters defined by Lusztig for Weyl groups, which can be applied to all complex reflection groups. In this article, we determine them for the cyclotomic Hecke algebras of the groups of the infinite seriesG(de, e, r), thus completing their calculation for all complex reflection groups.



1990 ◽  
Vol 18 (12) ◽  
pp. 3999-4029 ◽  
Author(s):  
M.C. Hughes


10.37236/232 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
D. Armstrong ◽  
C. Krattenthaler

The purpose of this paper is to complete the study, begun in the first author's PhD thesis, of the topology of the poset of generalized noncrossing partitions associated to real reflection groups. In particular, we calculate the Euler characteristic of this poset with the maximal and minimal elements deleted. As we show, the result on the Euler characteristic extends to generalized noncrossing partitions associated to well-generated complex reflection groups.





Sign in / Sign up

Export Citation Format

Share Document