scholarly journals $q,t$-Fuß-Catalan numbers for complex reflection groups

2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Christian Stump

International audience In type $A$, the $q,t$-Fuß-Catalan numbers $\mathrm{Cat}_n^{(m)}(q,t)$ can be defined as a bigraded Hilbert series of a module associated to the symmetric group $\mathcal{S}_n$. We generalize this construction to (finite) complex reflection groups and exhibit some nice conjectured algebraic and combinatorial properties of these polynomials in $q$ and $t$. Finally, we present an idea how these polynomials could be related to some graded Hilbert series of modules arising in the context of rational Cherednik algebras. This is work in progress. Dans le cas du type $A$, les $q,t$-nombres de Fuß-Catalan $\mathrm{Cat}_n^{(m)}(q,t)$ peuvent être définis comme la série de Hilbert bigraduée d'un certain module associé au groupe symétrique $\mathcal{S}_n$. Nous généralisons cette construction aux groupes de réflexion complexes (finis) et nous formulons de jolies propriétés (conjecturales) algébriques et combinatoires de ces polynômes en $q$ et $t$. Enfin, nous décrivons une idée sur la manière dont ces polynômes pourraient être liés à certaines séries de Hilbert de modules apparaissant dans le contexte des algèbres de Cherednik rationnelles. Ceci est un travail en cours.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
François Bergeron ◽  
Nicolas Borie ◽  
Nicolas M. Thiéry

arXiv : http://arxiv.org/abs/1011.3654 International audience We introduce deformations of the space of (multi-diagonal) harmonic polynomials for any finite complex reflection group of the form W=G(m,p,n), and give supporting evidence that this space seems to always be isomorphic, as a graded W-module, to the undeformed version. Nous introduisons une déformation de l'espace des polynômes harmoniques (multi-diagonaux) pour tout groupe de réflexions complexes de la forme W=G(m,p,n), et soutenons l'hypothèse que cet espace est toujours isomorphe, en tant que W-module gradué, à l'espace d'origine.



2017 ◽  
Vol 28 (14) ◽  
pp. 1750109 ◽  
Author(s):  
Yoshishige Haraoka ◽  
Toshiya Matsumura

We study the rigidity of three-dimensional representations of braid groups associated with finite primitive irreducible complex reflection groups in [Formula: see text]. In many cases, we show the rigidity. For rigid representations, we give explicit forms of the representations, which turns out to be the monodromy representations of uniformization equations of Saito–Kato–Sekiguchi [Uniformization systems of equations with singularities along the discriminant sets of complex reflection groups of rank three, Kyushu J. Math. 68 (2014) 181–221; On the uniformization of complements of discriminant loci, RIMS Kokyuroku 287 (1977) 117–137]. Invariant Hermitian forms are also studied.



2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Alex Fink ◽  
Benjamin Iriarte Giraldo

International audience We present $\textit{type preserving}$ bijections between noncrossing and nonnesting partitions for all classical reflection groups, answering a question of Athanasiadis and Reiner. The bijections for the abstract Coxeter types $B$, $C$ and $D$ are new in the literature. To find them we define, for every type, sets of statistics that are in bijection with noncrossing and nonnesting partitions, and this correspondence is established by means of elementary methods in all cases. The statistics can be then seen to be counted by the generalized Catalan numbers Cat$(W)$ when $W$ is a classical reflection group. In particular, the statistics of type $A$ appear as a new explicit example of objects that are counted by the classical Catalan numbers.



10.37236/785 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Robert Shwartz ◽  
Ron M. Adin ◽  
Yuval Roichman

It is shown that, under mild conditions, a complex reflection group $G(r,p,n)$ may be decomposed into a set-wise direct product of cyclic subgroups. This property is then used to extend the notion of major index and a corresponding Hilbert series identity to these and other closely related groups.





2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Fabrizio Caselli

International audience We introduce the class of projective reflection groups which includes all complex reflection groups. We show that several aspects involving the combinatorics and the representation theory of complex reflection groups find a natural description in this wider setting. On introduit la classe des groupes de réflexions projectifs, ce qui généralise la notion de groupe engendré par des réflexions. On montre que plusieurs aspects concernant la combinatoire et la théorie des représentations des groupes de réflexions complexes trouvent une description naturelle dans ce cadre plus général.



2010 ◽  
Vol 147 (3) ◽  
pp. 965-1002 ◽  
Author(s):  
Yuri Berest ◽  
Oleg Chalykh

AbstractWe introduce quasi-invariant polynomials for an arbitrary finite complex reflection group W. Unlike in the Coxeter case, the space of quasi-invariants of a given multiplicity is not, in general, an algebra but a module Qk over the coordinate ring of a (singular) affine variety Xk. We extend the main results of Berest et al. [Cherednik algebras and differential operators on quasi-invariants, Duke Math. J. 118 (2003), 279–337] to this setting: in particular, we show that the variety Xk and the module Qk are Cohen–Macaulay, and the rings of differential operators on Xk and Qk are simple rings, Morita equivalent to the Weyl algebra An(ℂ) , where n=dim Xk. Our approach relies on representation theory of complex Cherednik algebras introduced by Dunkl and Opdam [Dunkl operators for complex reflection groups, Proc. London Math. Soc. (3) 86 (2003), 70–108] and is parallel to that of Berest et al. As an application, we prove the existence of shift operators for an arbitrary complex reflection group, confirming a conjecture of Dunkl and Opdam. Another result is a proof of a conjecture of Opdam, concerning certain operations (KZ twists) on the set of irreducible representations of W.



2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Fabrizio Caselli ◽  
Roberta Fulci

International audience A finite subgroup $G$ of $GL(n,\mathbb{C})$ is involutory if the sum of the dimensions of its irreducible complex representations is given by the number of absolute involutions in the group, i.e. elements $g \in G$ such that $g \bar{g}=1$, where the bar denotes complex conjugation. A uniform combinatorial model is constructed for all non-exceptional irreducible complex reflection groups which are involutory including, in particular, all infinite families of finite irreducible Coxeter groups. If $G$ is a classical Weyl group this result is much refined in a way which is compatible with the Robinson-Schensted correspondence on involutions. Un sous-groupe fini $G$ de GL(n,ℂ) est dit involutoire si la somme des dimensions de ses représentations irréductibles complexes est donné par le nombre de involutions absolues dans le groupe, c'est-a-dire le nombre de éléments $g \in G$ tels que $g \bar{g}=1$, où le bar dénote la conjugaison complexe. Un modèle combinatoire uniforme est construit pour tous les groupes de réflexions complexes irréductibles qui sont involutoires, en comprenant, toutes les familles de groupes de Coxeter finis irréductibles. Si $G$ est un groupe de Weyl ce résultat peut se raffiner d'une manière compatible avec la correspondance de Robinson-Schensted sur les involutions.





Sign in / Sign up

Export Citation Format

Share Document