scholarly journals Cover time of a random graph with given degree sequence

2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Mohammed Abdullah ◽  
Colin Cooper ◽  
Alan Frieze

International audience In this paper we establish the cover time of a random graph $G(\textbf{d})$ chosen uniformly at random from the set of graphs with vertex set $[n]$ and degree sequence $\textbf{d}$. We show that under certain restrictions on $\textbf{d}$, the cover time of $G(\textbf{d})$ is with high probability asymptotic to $\frac{d-1}{ d-2} \frac{\theta}{ d}n \log n$. Here $\theta$ is the average degree and $d$ is the $\textit{effective minimum degree}$. The effective minimum degree is the first entry in the sorted degree sequence which occurs order $n$ times.

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Konstantinos Panagiotou

International audience This work is devoted to the study of typical properties of random graphs from classes with structural constraints, like for example planar graphs, with the additional restriction that the average degree is fixed. More precisely, within a general analytic framework, we provide sharp concentration results for the number of blocks (maximal biconnected subgraphs) in a random graph from the class in question. Among other results, we discover that essentially such a random graph belongs with high probability to only one of two possible types: it either has blocks of at most logarithmic size, or there is a \emphgiant block that contains linearly many vertices, and all other blocks are significantly smaller. This extends and generalizes the results in the previous work [K. Panagiotou and A. Steger. Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '09), pp. 432-440, 2009], where similar statements were shown without the restriction on the average degree.


2002 ◽  
Vol Vol. 5 ◽  
Author(s):  
Nikolaos Fountoulakis ◽  
Colin McDiarmid

International audience We present a full analysis of the expected number of 'rigid' 3-colourings of a sparse random graph. This shows that, if the average degree is at least 4.99, then as n → ∞ the expected number of such colourings tends to 0 and so the probability that the graph is 3-colourable tends to 0. (This result is tight, in that with average degree 4.989 the expected number tends to ∞.) This bound appears independently in Kaporis \textitet al. [Kap]. We then give a minor improvement, showing that the probability that the graph is 3-colourable tends to 0 if the average degree is at least 4.989.


10.37236/4666 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Daniel Poole

Bollobás and Thomason (1985) proved that for each $k=k(n) \in [1, n-1]$, with high probability, the random graph process, where edges are added to vertex set $V=[n]$ uniformly at random one after another, is such that the stopping time of having minimal degree $k$ is equal to the stopping time of becoming $k$-(vertex-)connected. We extend this result to the $d$-uniform random hypergraph process, where $k$ and $d$ are fixed. Consequently, for $m=\frac{n}{d}(\ln n +(k-1)\ln \ln n +c)$ and $p=(d-1)! \frac{\ln n + (k-1) \ln \ln n +c}{n^{d-1}}$, the probability that the random hypergraph models $H_d(n, m)$ and $H_d(n, p)$ are $k$-connected tends to $e^{-e^{-c}/(k-1)!}.$


10.37236/3198 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Michael Krivelevich ◽  
Wojciech Samotij

Let $\mathcal{H}$ be a given finite (possibly empty) family of connected graphs, each containing a cycle, and let $G$ be an arbitrary finite $\mathcal{H}$-free graph with minimum degree at least $k$. For $p \in [0,1]$, we form a $p$-random subgraph $G_p$ of $G$ by independently keeping each edge of $G$ with probability $p$. Extending a classical result of Ajtai, Komlós, and Szemerédi, we prove that for every positive $\varepsilon$, there exists a positive $\delta$ (depending only on $\varepsilon$) such that the following holds: If $p \geq \frac{1+\varepsilon}{k}$, then with probability tending to $1$ as $k \to \infty$, the random graph $G_p$ contains a cycle of length at least $n_{\mathcal{H}}(\delta k)$, where $n_\mathcal{H}(k)>k$ is the minimum number of vertices in an $\mathcal{H}$-free graph of average degree at least $k$. Thus in particular $G_p$ as above typically contains a cycle of length at least linear in $k$.


2016 ◽  
Vol Vol. 17 no. 3 (Graph Theory) ◽  
Author(s):  
Shih-Yan Chen ◽  
Shin-Shin Kao ◽  
Hsun Su

International audience Assume that $n, \delta ,k$ are integers with $0 \leq k < \delta < n$. Given a graph $G=(V,E)$ with $|V|=n$. The symbol $G-F, F \subseteq V$, denotes the graph with $V(G-F)=V-F$, and $E(G-F)$ obtained by $E$ after deleting the edges with at least one endvertex in $F$. $G$ is called <i>$k$-vertex fault traceable</i>, <i>$k$-vertex fault Hamiltonian</i>, or <i>$k$-vertex fault Hamiltonian-connected</i> if $G-F$ remains traceable, Hamiltonian, and Hamiltonian-connected for all $F$ with $0 \leq |F| \leq k$, respectively. The notations $h_1(n, \delta ,k)$, $h_2(n, \delta ,k)$, and $h_3(n, \delta ,k)$ denote the minimum number of edges required to guarantee an $n$-vertex graph with minimum degree $\delta (G) \geq \delta$ to be $k$-vertex fault traceable, $k$-vertex fault Hamiltonian, and $k$-vertex fault Hamiltonian-connected, respectively. In this paper, we establish a theorem which uses the degree sequence of a given graph to characterize the $k$-vertex fault traceability/hamiltonicity/Hamiltonian-connectivity, respectively. Then we use this theorem to obtain the formulas for $h_i(n, \delta ,k)$ for $1 \leq i \leq 3$, which improves and extends the known results for $k=0$.


2014 ◽  
Vol 45 (4) ◽  
pp. 627-674
Author(s):  
Colin Cooper ◽  
Alan Frieze ◽  
Eyal Lubetzky

2012 ◽  
Vol 312 (21) ◽  
pp. 3146-3163 ◽  
Author(s):  
Mohammed Abdullah ◽  
Colin Cooper ◽  
Alan Frieze

2011 ◽  
Vol 20 (3) ◽  
pp. 413-433 ◽  
Author(s):  
BRENDAN D. McKAY

Let d = (d1, d2, . . ., dn) be a vector of non-negative integers with even sum. We prove some basic facts about the structure of a random graph with degree sequence d, including the probability of a given subgraph or induced subgraph.Although there are many results of this kind, they are restricted to the sparse case with only a few exceptions. Our focus is instead on the case where the average degree is approximately a constant fraction of n.Our approach is the multidimensional saddle-point method. This extends the enumerative work of McKay and Wormald (1990) and is analogous to the theory developed for bipartite graphs by Greenhill and McKay (2009).


10.37236/6084 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Jacques Verstraete ◽  
Dhruv Mubayi

Erdős and Simonovits proved that the number of paths of length $t$ in an $n$-vertex graph of average degree $d$ is at least $(1 - \delta) nd(d - 1) \cdots (d - t + 1)$, where $\delta = (\log d)^{-1/2 + o(1)}$ as $d \rightarrow \infty$. In this paper, we strengthen and generalize this result as follows. Let $T$ be a tree with $t$ edges. We prove that for any $n$-vertex graph $G$ of average degree $d$ and minimum degree greater than $t$, the number of labelled copies of $T$ in $G$ is at least \[(1 - \varepsilon) n d(d - 1) \cdots (d - t + 1)\] where $\varepsilon = O(d^{-2})$ as $d \rightarrow \infty$. This bound is tight except for the term $1 - \varepsilon$, as shown by a disjoint union of cliques. Our proof is obtained by first showing a lower bound that is a convex function of the degree sequence of $G$, and this answers a question of Dellamonica et. al.


10.37236/4958 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
Michel Bode ◽  
Nikolaos Fountoulakis ◽  
Tobias Müller

We consider a model for complex networks that was introduced by Krioukov et al.  In this model, $N$ points are chosen randomly inside a disk on the hyperbolic plane and any two of them are joined by an  edge if they are within a certain hyperbolic distance.  The $N$ points are distributed according to a quasi-uniform distribution, which is a distorted version of  the uniform distribution. The model turns out to behave similarly to the well-known Chung-Lu model, but without the independence between the edges. Namely, it exhibits a power-law degree sequence and small distances but, unlike the Chung-Lu model and many other well-known models for complex networks, it also exhibits clustering. The model is controlled by two parameters $\alpha$ and $\nu$ where, roughly speaking, $\alpha$ controls the exponent of the power-law and $\nu$ controls the average degree. The present paper focuses on the evolution of the component structure of the random graph.  We show that (a) for $\alpha > 1$ and $\nu$ arbitrary, with high probability, as the number of vertices grows, the largest component of the random graph has sublinear order; (b) for $\alpha < 1$ and $\nu$ arbitrary with high probability there is a "giant" component  of linear order,  and (c) when $\alpha=1$ then there is a non-trivial phase transition for the existence of a linear-sized component in terms of $\nu$. A corrigendum was added to this paper 29 Dec 2018.


Sign in / Sign up

Export Citation Format

Share Document