scholarly journals Cartan invariant matrices for finite monoids

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Nicolas M. Thiéry

International audience Let $M$ be a finite monoid. In this paper we describe how the Cartan invariant matrix of the monoid algebra of $M$ over a field $\mathbb{K}$ of characteristic zero can be expressed using characters and some simple combinatorial statistic. In particular, it can be computed efficiently from the composition factors of the left and right class modules of $M$. When $M$ is aperiodic, this approach works in any characteristic, and generalizes to $\mathbb{K}$ a principal ideal domain like $\mathbb{Z}$. When $M$ is $\mathcal{R}$-trivial, we retrieve the formerly known purely combinatorial description of the Cartan matrix. Soit $M$ un monoïde fini. Dans cet article, nous exprimons la matrice des invariants de Cartan de l'algèbre de $M$ sur un corps $\mathbb{K}$ de caractéristique zéro à l'aide de caractères et d'une statistique combinatoire simple. En particulier, elle peut être calculée efficacement à partir des facteurs de compositions des modules de classes à gauche et à droite de $M$. Lorsque $M$ est apériodique, cette approche se généralise à toute caractéristique et aux anneaux principaux comme $\mathbb{Z}$. Lorsque $M$ est $\mathcal{R}$-trivial, nous retrouvons la description combinatoire de la matrice de Cartan précédemment connue.


1963 ◽  
Vol 59 (3) ◽  
pp. 575-587 ◽  
Author(s):  
G. M. Kelly

Let A be a right Λ-complex and C be a left Λ-complex where Λ is a ring which is both left and right hereditary; a principal ideal domain is a special case of such a ring. This paper is concerned with the Künneth theorem expressing the homology H(A⊗C) of the product complex A⊗C (= A⊗ΛC) in terms of H(A) and H(C). Any notations we do not explain are those of (1).



2013 ◽  
Vol 29 (2) ◽  
pp. 267-273
Author(s):  
MIHAIL URSUL ◽  
◽  
MARTIN JURAS ◽  

We prove that every infinite nilpotent ring R admits a ring topology T for which (R, T ) has an open totally bounded countable subring with trivial multiplication. A new example of a compact ring R for which R2 is not closed, is given. We prove that every compact Bezout domain is a principal ideal domain.



1970 ◽  
Vol 22 (4) ◽  
pp. 839-846 ◽  
Author(s):  
Robert V. Moody

In [2], we considered a class of Lie algebras generalizing the classical simple Lie algebras. Using a field Φ of characteristic zero and a square matrix (Aij) of integers with the properties (1) Aii = 2, (2) Aij ≦ 0 if i ≠ j, (3) Aij = 0 if and only if Ajt = 0, and (4) is symmetric for some appropriate non-zero rational a Lie algebra E = E((Aij)) over Φ can be constructed, together with the usual accoutrements: a root system, invariant bilinear form, and Weyl group.For indecomposable (A ij), E is simple except when (Aij) is singular and removal of any row and corresponding column of (Aij) leaves a Cartan matrix. The non-simple Es, Euclidean Lie algebras, were our object of study in [3] as well as in the present paper. They are infinite-dimensional, have ascending chain condition on ideals, and proper ideals are of finite codimension.



1987 ◽  
Vol 30 (3) ◽  
pp. 351-362 ◽  
Author(s):  
W. D. Burgess

The Cartan matrix C of a left artinian ring A, with indecomposable projectives P1,…,Pn and corresponding simples Si=Pi/JPi, is an n×n integral matrix with entries Cij, the number of copies of the simple sj which appear as composition factors of Pi. A relationship between the invertibility of this matrix (as an integral matrix) and the finiteness of the global dimension has long been known: gl dim A < ∞⇒det C = ± 1 (Eilenberg [3]). More recently Zacharia [9] has shown that gl dim A ≦ 2⇒det C = 1, and in fact no rings of finite global dimension are known with det C = −1. The converse, det C = l⇒gl dim A < ∞, is false, as easy examples show ([[1) or [3]). However if A is left serial, gl dim A < ∞iff det C = l [1]. If A = ⊕n ≧ 0 An is ℤ-graded and the radical J = ⊕n ≧ 0 An, Wilson [8] calls such rings positively graded. Here there is a graded Cartan matrix with entries from ℤ[X] and gl dim A < ∞⇒det = 1 and, hence, det C = l [8, Prop. 2.2].



1980 ◽  
Vol 32 (1) ◽  
pp. 240-245 ◽  
Author(s):  
Robert C. Thompson

Let R be a principal ideal domain, i.e., a commutative ring without zero divisors in which every ideal is principal. The invariant factors of a matrix A with entries in R are the diagonal elements when A is converted to a diagonal form D = UAV, where U, V have entries in R and are unimodular (invertible over R), and the diagonal entries d1 …, dn of D form a divisibility chain: d1|d2| … |dn. Very little has been proved about how invariant factors may change when matrices are added. This is in contrast to the corresponding question for matrix multiplication, where much information is now available [6].



1969 ◽  
Vol 21 ◽  
pp. 1432-1454 ◽  
Author(s):  
Robert V. Moody

Our aim in this paper is to study a certain class of Lie algebras which arose naturally in (4). In (4), we showed that beginning with an indecomposable symmetrizable generalized Cartan matrix (A ij) and a field Φ of characteristic zero, we could construct a Lie algebra E((A ij)) over Φ patterned on the finite-dimensional split simple Lie algebras. We were able to show that E((A ij)) is simple providing that (A ij) does not fall in the list given in (4, Table). We did not prove the converse, however.The diagrams of the table of (4) appear in Table 2. Call the matrices that they represent Euclidean matrices and their corresponding algebras Euclidean Lie algebras. Our first objective is to show that Euclidean Lie algebras are not simple.



1971 ◽  
Vol 5 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Gilbert Baumslag

We establish the result that a finitely generated cyclic extension of a free group is residually finite. This is done, in part, by making use of the fact that a finitely generated module over a principal ideal domain is a direct sum of cyclic modules.





Sign in / Sign up

Export Citation Format

Share Document