Simple Quotients of Euclidean Lie Algebras

1970 ◽  
Vol 22 (4) ◽  
pp. 839-846 ◽  
Author(s):  
Robert V. Moody

In [2], we considered a class of Lie algebras generalizing the classical simple Lie algebras. Using a field Φ of characteristic zero and a square matrix (Aij) of integers with the properties (1) Aii = 2, (2) Aij ≦ 0 if i ≠ j, (3) Aij = 0 if and only if Ajt = 0, and (4) is symmetric for some appropriate non-zero rational a Lie algebra E = E((Aij)) over Φ can be constructed, together with the usual accoutrements: a root system, invariant bilinear form, and Weyl group.For indecomposable (A ij), E is simple except when (Aij) is singular and removal of any row and corresponding column of (Aij) leaves a Cartan matrix. The non-simple Es, Euclidean Lie algebras, were our object of study in [3] as well as in the present paper. They are infinite-dimensional, have ascending chain condition on ideals, and proper ideals are of finite codimension.

1976 ◽  
Vol 28 (1) ◽  
pp. 174-180 ◽  
Author(s):  
Stephen Berman

A well known result in the theory of Lie algebras, due to H. Zassenhaus, states that if is a finite dimensional Lie algebra over the field K such that the killing form of is non-degenerate, then the derivations of are all inner, [3, p. 74]. In particular, this applies to the finite dimensional split simple Lie algebras over fields of characteristic zero. In this paper we extend this result to a class of Lie algebras which generalize the split simple Lie algebras, and which are defined by Cartan matrices (for a definition see § 1). Because of the fact that the algebras we consider are usually infinite dimensional, the method we employ in our investigation is quite different from the standard one used in the finite dimensional case, and makes no reference to any associative bilinear form on the algebras.


1969 ◽  
Vol 21 ◽  
pp. 1432-1454 ◽  
Author(s):  
Robert V. Moody

Our aim in this paper is to study a certain class of Lie algebras which arose naturally in (4). In (4), we showed that beginning with an indecomposable symmetrizable generalized Cartan matrix (A ij) and a field Φ of characteristic zero, we could construct a Lie algebra E((A ij)) over Φ patterned on the finite-dimensional split simple Lie algebras. We were able to show that E((A ij)) is simple providing that (A ij) does not fall in the list given in (4, Table). We did not prove the converse, however.The diagrams of the table of (4) appear in Table 2. Call the matrices that they represent Euclidean matrices and their corresponding algebras Euclidean Lie algebras. Our first objective is to show that Euclidean Lie algebras are not simple.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050100 ◽  
Author(s):  
Shavkat Ayupov ◽  
Baxtiyor Yusupov

In the present paper, we study 2-local derivations of infinite-dimensional Lie algebras over a field of characteristic zero. We prove that all 2-local derivations of the Witt algebra as well as of the positive Witt algebra and the classical one-sided Witt algebra are (global) derivations. We also give an example of an infinite-dimensional Lie algebra with a 2-local derivation which is not a derivation.


2011 ◽  
Vol 226 (2) ◽  
pp. 1911-1972 ◽  
Author(s):  
Maria Gorelik ◽  
Victor Kac

2017 ◽  
Vol 16 (11) ◽  
pp. 1750205
Author(s):  
Özge Öztekin ◽  
Naime Ekici

Let [Formula: see text] be the free nilpotent Lie algebra of finite rank [Formula: see text] [Formula: see text] and nilpotency class [Formula: see text] over a field of characteristic zero. We give a characterization of central automorphisms of [Formula: see text] and we find sufficient conditions for an automorphism of [Formula: see text] to be a central automorphism.


Author(s):  
C. J. Atkin

In a long sequence of notes in the Comptes Rendus and elsewhere, and in the papers [1], [2], [3], [6], [7], Lichnerowicz and his collaborators have studied the ‘classical infinite-dimensional Lie algebras’, their derivations, automorphisms, co-homology, and other properties. The most familiar of these algebras is the Lie algebra of C∞ vector fields on a C∞ manifold. Another is the Lie algebra of ‘Poisson brackets’, that is, of C∞ functions on a C∞ symplectic manifold, with the Poisson bracket as composition; some questions concerning this algebra are of considerable interest in the theory of quantization – see, for instance, [2] and [3].


1949 ◽  
Vol 1 (2) ◽  
pp. 125-152 ◽  
Author(s):  
Ernst Snapper

The purpose of this paper is to investigate completely indecomposable modules. A completely indecomposable module is an additive abelian group with a ring A as operator domain, where the following four conditions are satisfied.1-1. A is a commutative ring and has a unit element which is unit operator for .1-2. The submodules of satisfy the ascending chain condition. (Submodule will always mean invariant submodule.)


1962 ◽  
Vol 14 ◽  
pp. 553-564 ◽  
Author(s):  
Richard Block

If L is a Lie algebra with a representation Δ a→aΔ (a in L) (of finite degree), then by the trace form f = fΔ of Δ is meant the symmetric bilinear form on L obtained by taking the trace of the matrix products:Then f is invariant, that is, f is symmetric and f(ab, c) — f(a, bc) for all a, b, c in L. By the Δ-radical L⊥ = L⊥ of L is meant the set of a in L such that f(a, b) = 0 for all b in L. Then L⊥ is an ideal and f induces a bilinear form , called a quotient trace form, on L/L⊥. Thus an algebra has a quotient trace form if and only if there exists a Lie algebra L with a representation Δ such that


Sign in / Sign up

Export Citation Format

Share Document