scholarly journals The \v Cerný conjecture for aperiodic automata

2007 ◽  
Vol Vol. 9 no. 2 ◽  
Author(s):  
A. N. Trahtman

International audience A word w is called a synchronizing (recurrent, reset, directable) word of a deterministic finite automaton (DFA) if w brings all states of the automaton to some specific state; a DFA that has a synchronizing word is said to be synchronizable. Cerny conjectured in 1964 that every n-state synchronizable DFA possesses a synchronizing word of length at most (n-1)2. We consider automata with aperiodic transition monoid (such automata are called aperiodic). We show that every synchronizable n-state aperiodic DFA has a synchronizing word of length at most n(n-1)/2. Thus, for aperiodic automata as well as for automata accepting only star-free languages, the Cerny conjecture holds true.

2013 ◽  
Vol Vol. 15 no. 1 (Automata, Logic and Semantics) ◽  
Author(s):  
Anne Lacroix ◽  
Narad Rampersad

Automata, Logic and Semantics International audience If L is a language, the automaticity function A_L(n) (resp. N_L(n)) of L counts the number of states of a smallest deterministic (resp. non-deterministic) finite automaton that accepts a language that agrees with L on all inputs of length at most n. We provide bounds for the automaticity of the language of primitive words and the language of unbordered words over a k-letter alphabet. We also give a bound for the automaticity of the language of base-b representations of the irreducible polynomials over a finite field. This latter result is analogous to a result of Shallit concerning the base-k representations of the set of prime numbers.


10.37236/5616 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Henk Don

A deterministic finite automaton is synchronizing if there exists a word that sends all states of the automaton to the same state. Černý conjectured in 1964 that a synchronizing automaton with $n$ states has a synchronizing word of length at most $(n-1)^2$. We introduce the notion of aperiodically 1-contracting automata and prove that in these automata all subsets of the state set are reachable, so that in particular they are synchronizing. Furthermore, we give a sufficient condition under which the Černý conjecture holds for aperiodically 1-contracting automata. As a special case, we prove some results for circular automata.


2021 ◽  
Vol 55 ◽  
pp. 7
Author(s):  
Jens Bruchertseifer ◽  
Henning Fernau

We study the problem DFA-SW of determining if a given deterministic finite automaton A possesses a synchronizing word of length at most k for automata whose (multi-)graphs are TTSPL, i.e., series-parallel, plus allowing some self-loops. While DFA-SW remains NP-complete on TTSPL automata, we also find (further) restrictions with efficient (parameterized) algorithms. We also study the (parameterized) complexity of related problems, for instance, extension variants of the synchronizing word problem, or the problem of finding smallest alphabet-induced synchronizable sub-automata.


2009 ◽  
Vol Vol. 11 no. 1 (Automata, Logic and Semantics) ◽  
Author(s):  
Alessandra Cherubini ◽  
Andrzej Kisielewicz ◽  
Brunetto Piochi

Automata, Logic and Semantics International audience Given a word w over a finite alphabet Sigma and a finite deterministic automaton A = < Q,Sigma,delta >, the inequality vertical bar delta(Q,w)vertical bar <= vertical bar Q vertical bar - k means that under the natural action of the word w the image of the state set Q is reduced by at least k states. The word w is k-collapsing (k-synchronizing) if this inequality holds for any deterministic finite automaton ( with k + 1 states) that satisfies such an inequality for at least one word. We prove that for each alphabet Sigma there is a 2-collapsing word whose length is vertical bar Sigma vertical bar(3)+6 vertical bar Sigma vertical bar(2)+5 vertical bar Sigma vertical bar/2. Then we produce shorter 2-collapsing and 2-synchronizing words over alphabets of 4 and 5 letters.


2015 ◽  
Vol 20 (3) ◽  
pp. 262-269 ◽  
Author(s):  
Ryosuke Nakamura ◽  
Kenji Sawada ◽  
Seiichi Shin ◽  
Kenji Kumagai ◽  
Hisato Yoneda

2005 ◽  
Vol 16 (05) ◽  
pp. 1027-1038 ◽  
Author(s):  
LYNETTE VAN ZIJL

Iwama et al. showed that there exists an n-state binary nondeterministic finite automaton such that its equivalent minimal deterministic finite automaton has exactly 2n - α states, for all n ≥ 7 and 5 ≤ α ≤ 2n-2, subject to certain coprimality conditions. We investigate the same question for both unary and binary symmetric difference nondeterministic finite automata. In the binary case, we show that for any n ≥ 4, there is an n-state symmetric difference nondeterministic finite automaton for which the equivalent minimal deterministic finite automaton has 2n - 1 + 2k - 1 - 1 states, for 2 < k ≤ n - 1. In the unary case, we consider a large practical subclass of unary symmetric difference nondeterministic finite automata: for all n ≥ 2, we argue that there are many values of α such that there is no n-state unary symmetric difference nondeterministic finite automaton with an equivalent minimal deterministic finite automaton with 2n - α states, where 0 < α < 2n - 1. For each n ≥ 2, we quantify such values of α precisely.


2019 ◽  
Vol 30 (06n07) ◽  
pp. 1197-1216
Author(s):  
Timothy Ng ◽  
David Rappaport ◽  
Kai Salomaa

The neighbourhood of a regular language with respect to the prefix, suffix and subword distance is always regular and a tight bound for the state complexity of prefix distance neighbourhoods is known. We give upper bounds for the state complexity of the neighbourhood of radius [Formula: see text] of an [Formula: see text]-state deterministic finite automaton language with respect to the suffix distance and the subword distance, respectively. For restricted values of [Formula: see text] and [Formula: see text] we give a matching lower bound for the state complexity of suffix distance neighbourhoods.


2017 ◽  
Vol 7 (1) ◽  
pp. 24-28
Author(s):  
Mirzakhmet Syzdykov

Abstract In this work we present the algorithms to produce deterministic finite automaton (DFA) for extended operators in regular expressions like intersection, subtraction and complement. The method like “overriding” of the source NFA(NFA not defined) with subset construction rules is used. The past work described only the algorithm for AND-operator (or intersection of regular languages); in this paper the construction for the MINUS-operator (and complement) is shown.


Sign in / Sign up

Export Citation Format

Share Document