scholarly journals Strong chromatic index of products of graphs

2007 ◽  
Vol Vol. 9 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Olivier Togni

Graphs and Algorithms International audience The strong chromatic index of a graph is the minimum number of colours needed to colour the edges in such a way that each colour class is an induced matching. In this paper, we present bounds for strong chromatic index of three different products of graphs in term of the strong chromatic index of each factor. For the cartesian product of paths, cycles or complete graphs, we derive sharper results. In particular, strong chromatic indices of d-dimensional grids and of some toroidal grids are given along with approximate results on the strong chromatic index of generalized hypercubes.

2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Manu Basavaraju

Graph Theory International audience An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). A graph G is called fully subdivided if it is obtained from another graph H by replacing every edge by a path of length at least two. Fully subdivided graphs are known to be acyclically edge colorable using Δ+1 colors since they are properly contained in 2-degenerate graphs which are acyclically edge colorable using Δ+1 colors. Muthu, Narayanan and Subramanian gave a simple direct proof of this fact for the fully subdivided graphs. Fiamcik has shown that if we subdivide every edge in a cubic graph with at most two exceptions to get a graph G, then a'(G)=3. In this paper we generalise the bound to Δ for all fully subdivided graphs improving the result of Muthu et al. In particular, we prove that if G is a fully subdivided graph and Δ(G) ≥3, then a'(G)=Δ(G). Consider a graph G=(V,E), with E=E(T) ∪E(C) where T is a rooted tree on the vertex set V and C is a simple cycle on the leaves of T. Such a graph G is called a Halin graph if G has a planar embedding and T has no vertices of degree 2. Let Kn denote a complete graph on n vertices. Let G be a Halin graph with maximum degree Δ. We prove that, a'(G) = 5 if G is K4, 4 if Δ = 3 and G is not K4, and Δ otherwise.


Author(s):  
Vikram Srinivasan Thiru ◽  
S. Balaji

The strong edge coloring of a graph G is a proper edge coloring that assigns a different color to any two edges which are at most two edges apart. The minimum number of color classes that contribute to such a proper coloring is said to be the strong chromatic index of G. This paper defines the strong chromatic index for the generalized Jahangir graphs and the generalized Helm graphs.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1265
Author(s):  
Ming Chen ◽  
Lianying Miao ◽  
Shan Zhou

A strong edge coloring of a graph G is a proper edge coloring such that every color class is an induced matching. In 2018, Yang and Wu proposed a conjecture that every generalized Petersen graph P(n,k) with k≥4 and n>2k can be strong edge colored with (at most) seven colors. Although the generalized Petersen graph P(n,k) is a kind of special graph, the strong chromatic index of P(n,k) is still unknown. In this paper, we support the conjecture by showing that the strong chromatic index of every generalized Petersen graph P(n,k) with k≥4 and n>2k is at most 9.


2005 ◽  
Vol Vol. 7 ◽  
Author(s):  
David R. Wood

International audience Let G be a graph with chromatic number χ (G). A vertex colouring of G is \emphacyclic if each bichromatic subgraph is a forest. A \emphstar colouring of G is an acyclic colouring in which each bichromatic subgraph is a star forest. Let χ _a(G) and χ _s(G) denote the acyclic and star chromatic numbers of G. This paper investigates acyclic and star colourings of subdivisions. Let G' be the graph obtained from G by subdividing each edge once. We prove that acyclic (respectively, star) colourings of G' correspond to vertex partitions of G in which each subgraph has small arboricity (chromatic index). It follows that χ _a(G'), χ _s(G') and χ (G) are tied, in the sense that each is bounded by a function of the other. Moreover the binding functions that we establish are all tight. The \emphoriented chromatic number χ ^→(G) of an (undirected) graph G is the maximum, taken over all orientations D of G, of the minimum number of colours in a vertex colouring of D such that between any two colour classes, all edges have the same direction. We prove that χ ^→(G')=χ (G) whenever χ (G)≥ 9.


2019 ◽  
Vol 11 (06) ◽  
pp. 1950064
Author(s):  
Kai Lin ◽  
Min Chen ◽  
Dong Chen

Let [Formula: see text] be a graph. An [Formula: see text]-relaxed strong edge [Formula: see text]-coloring is a mapping [Formula: see text] such that for any edge [Formula: see text], there are at most [Formula: see text] edges adjacent to [Formula: see text] and [Formula: see text] edges which are distance two apart from [Formula: see text] assigned the same color as [Formula: see text]. The [Formula: see text]-relaxed strong chromatic index, denoted by [Formula: see text], is the minimum number [Formula: see text] of an [Formula: see text]-relaxed strong [Formula: see text]-edge-coloring admitted by [Formula: see text]. [Formula: see text] is called [Formula: see text]-relaxed strong edge [Formula: see text]-colorable if for a given list assignment [Formula: see text], there exists an [Formula: see text]-relaxed strong edge coloring [Formula: see text] of [Formula: see text] such that [Formula: see text] for all [Formula: see text]. If [Formula: see text] is [Formula: see text]-relaxed strong edge [Formula: see text]-colorable for any list assignment with [Formula: see text] for all [Formula: see text], then [Formula: see text] is said to be [Formula: see text]-relaxed strong edge [Formula: see text]-choosable. The [Formula: see text]-relaxed strong list chromatic index, denoted by [Formula: see text], is defined to be the smallest integer [Formula: see text] such that [Formula: see text] is [Formula: see text]-relaxed strong edge [Formula: see text]-choosable. In this paper, we prove that every planar graph [Formula: see text] with girth 6 satisfies that [Formula: see text]. This strengthens a result which says that every planar graph [Formula: see text] with girth 7 and [Formula: see text] satisfies that [Formula: see text].


10.37236/7016 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Mingfang Huang ◽  
Michael Santana ◽  
Gexin Yu

A strong edge-coloring of a graph $G$ is a coloring of the edges such that every color class induces a matching in $G$. The strong chromatic index of a graph is the minimum number of colors needed in a strong edge-coloring of the graph. In 1985, Erdős and Nešetřil conjectured that every graph with maximum degree $\Delta$ has a strong edge-coloring using at most $\frac{5}{4}\Delta^2$ colors if $\Delta$ is even, and at most $\frac{5}{4}\Delta^2 - \frac{1}{2}\Delta + \frac{1}{4}$ if $\Delta$ is odd. Despite recent progress for large $\Delta$ by using an iterative probabilistic argument, the only nontrivial case of the conjecture that has been verified is when $\Delta = 3$, leaving the need for new approaches to verify the conjecture for any $\Delta\ge 4$. In this paper, we apply some ideas used in previous results to an upper bound of 21 for graphs with maximum degree 4, which improves a previous bound due to Cranston in 2006 and moves closer to the conjectured upper bound of 20.


2017 ◽  
Vol 340 (5) ◽  
pp. 1143-1149 ◽  
Author(s):  
Mingfang Huang ◽  
Gexin Yu ◽  
Xiangqian Zhou

2021 ◽  
Vol 10 (4) ◽  
pp. 2115-2129
Author(s):  
P. Kandan ◽  
S. Subramanian

On the great success of bond-additive topological indices like Szeged, Padmakar-Ivan, Zagreb, and irregularity measures, yet another index, the Mostar index, has been introduced recently as a peripherality measure in molecular graphs and networks. For a connected graph G, the Mostar index is defined as $$M_{o}(G)=\displaystyle{\sum\limits_{e=gh\epsilon E(G)}}C(gh),$$ where $C(gh) \,=\,\left|n_{g}(e)-n_{h}(e)\right|$ be the contribution of edge $uv$ and $n_{g}(e)$ denotes the number of vertices of $G$ lying closer to vertex $g$ than to vertex $h$ ($n_{h}(e)$ define similarly). In this paper, we prove a general form of the results obtained by $Do\check{s}li\acute{c}$ et al.\cite{18} for compute the Mostar index to the Cartesian product of two simple connected graph. Using this result, we have derived the Cartesian product of paths, cycles, complete bipartite graphs, complete graphs and to some molecular graphs.


Sign in / Sign up

Export Citation Format

Share Document