scholarly journals Strong Edge Coloring of Generalized Petersen Graphs

Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1265
Author(s):  
Ming Chen ◽  
Lianying Miao ◽  
Shan Zhou

A strong edge coloring of a graph G is a proper edge coloring such that every color class is an induced matching. In 2018, Yang and Wu proposed a conjecture that every generalized Petersen graph P(n,k) with k≥4 and n>2k can be strong edge colored with (at most) seven colors. Although the generalized Petersen graph P(n,k) is a kind of special graph, the strong chromatic index of P(n,k) is still unknown. In this paper, we support the conjecture by showing that the strong chromatic index of every generalized Petersen graph P(n,k) with k≥4 and n>2k is at most 9.

Author(s):  
Vikram Srinivasan Thiru ◽  
S. Balaji

The strong edge coloring of a graph G is a proper edge coloring that assigns a different color to any two edges which are at most two edges apart. The minimum number of color classes that contribute to such a proper coloring is said to be the strong chromatic index of G. This paper defines the strong chromatic index for the generalized Jahangir graphs and the generalized Helm graphs.


10.37236/271 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Rui Yang ◽  
Xinmin Hou ◽  
Ning Li ◽  
Wei Zhong

A graph $G$ is said to be distance-balanced if for any edge $uv$ of $G$, the number of vertices closer to $u$ than to $v$ is equal to the number of vertices closer to $v$ than to $u$. Let $GP(n,k)$ be a generalized Petersen graph. Jerebic, Klavžar, and Rall [Distance-balanced graphs, Ann. Comb. 12 (2008) 71–79] conjectured that: For any integer $k\geq 2$, there exists a positive integer $n_0$ such that the $GP(n,k)$ is not distance-balanced for every integer $n\geq n_0$. In this note, we give a proof of this conjecture.


CAUCHY ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
Marsidi Marsidi ◽  
Dafik Dafik ◽  
Ika Hesti Agustin ◽  
Ridho Alfarisi

<p class="Abstract">The local adjacency metric dimension is one of graph topic. Suppose there are three neighboring vertex , ,  in path . Path  is called local if  where each has representation: a is not equals  and  may equals to . Let’s say, .  For an order set of vertices , the adjacency representation of  with respect to  is the ordered -tuple , where  represents the adjacency distance . The distance  defined by 0 if , 1 if  adjacent with , and 2 if  does not adjacent with . The set  is a local adjacency resolving set of  if for every two distinct vertices ,  and  adjacent with y then . A minimum local adjacency resolving set in  is called local adjacency metric basis. The cardinality of vertices in the basis is a local adjacency metric dimension of , denoted by . Next, we investigate the local adjacency metric dimension of generalized petersen graph.</p>


Author(s):  
Roberto Frucht ◽  
Jack E. Graver ◽  
Mark E. Watkins

1.Introduction. For integersnandkwith 2 ≤ 2k <n, thegeneralized Petersen graph G(n, k)has been defined in (8) to have vertex-setand edge-setE(G(n, k))to consist of all edges of the formwhereiis an integer.All subscripts in this paper are to be read modulo n, where the particular value ofnwill be clear from the context. ThusG(n, k)is always a trivalent graph of order 2n, andG(5, 2) is the well known Petersen graph. (The subclass of these graphs withnandkrelatively prime was first considered by Coxeter ((2), p. 417ff.).)


10.37236/7016 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Mingfang Huang ◽  
Michael Santana ◽  
Gexin Yu

A strong edge-coloring of a graph $G$ is a coloring of the edges such that every color class induces a matching in $G$. The strong chromatic index of a graph is the minimum number of colors needed in a strong edge-coloring of the graph. In 1985, Erdős and Nešetřil conjectured that every graph with maximum degree $\Delta$ has a strong edge-coloring using at most $\frac{5}{4}\Delta^2$ colors if $\Delta$ is even, and at most $\frac{5}{4}\Delta^2 - \frac{1}{2}\Delta + \frac{1}{4}$ if $\Delta$ is odd. Despite recent progress for large $\Delta$ by using an iterative probabilistic argument, the only nontrivial case of the conjecture that has been verified is when $\Delta = 3$, leaving the need for new approaches to verify the conjecture for any $\Delta\ge 4$. In this paper, we apply some ideas used in previous results to an upper bound of 21 for graphs with maximum degree 4, which improves a previous bound due to Cranston in 2006 and moves closer to the conjectured upper bound of 20.


2007 ◽  
Vol Vol. 9 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Olivier Togni

Graphs and Algorithms International audience The strong chromatic index of a graph is the minimum number of colours needed to colour the edges in such a way that each colour class is an induced matching. In this paper, we present bounds for strong chromatic index of three different products of graphs in term of the strong chromatic index of each factor. For the cartesian product of paths, cycles or complete graphs, we derive sharper results. In particular, strong chromatic indices of d-dimensional grids and of some toroidal grids are given along with approximate results on the strong chromatic index of generalized hypercubes.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050035
Author(s):  
Danjun Huang ◽  
Xiaoxiu Zhang ◽  
Weifan Wang ◽  
Stephen Finbow

The adjacent vertex distinguishing edge coloring of a graph [Formula: see text] is a proper edge coloring of [Formula: see text] such that the color sets of any pair of adjacent vertices are distinct. The minimum number of colors required for an adjacent vertex distinguishing edge coloring of [Formula: see text] is denoted by [Formula: see text]. It is observed that [Formula: see text] when [Formula: see text] contains two adjacent vertices of degree [Formula: see text]. In this paper, we prove that if [Formula: see text] is a planar graph without 3-cycles, then [Formula: see text]. Furthermore, we characterize the adjacent vertex distinguishing chromatic index for planar graphs of [Formula: see text] and without 3-cycles. This improves a result from [D. Huang, Z. Miao and W. Wang, Adjacent vertex distinguishing indices of planar graphs without 3-cycles, Discrete Math. 338 (2015) 139–148] that established [Formula: see text] for planar graphs without 3-cycles.


2021 ◽  
Vol 41 (2) ◽  
pp. 245-257
Author(s):  
Mohammad R. Piri ◽  
Saeid Alikhani

We introduce and study the dominated edge coloring of a graph. A dominated edge coloring of a graph \(G\), is a proper edge coloring of \(G\) such that each color class is dominated by at least one edge of \(G\). The minimum number of colors among all dominated edge coloring is called the dominated edge chromatic number, denoted by \(\chi_{dom}^{\prime}(G)\). We obtain some properties of \(\chi_{dom}^{\prime}(G)\) and compute it for specific graphs. Also examine the effects on \(\chi_{dom}^{\prime}(G)\), when \(G\) is modified by operations on vertex and edge of \(G\). Finally, we consider the \(k\)-subdivision of \(G\) and study the dominated edge chromatic number of these kind of graphs.


Sign in / Sign up

Export Citation Format

Share Document