scholarly journals Total domination in K₅- and K₆-covered graphs

2008 ◽  
Vol Vol. 10 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Odile Favaron ◽  
H. Karami ◽  
S. M. Sheikholeslami

Graphs and Algorithms International audience A graph G is Kr-covered if each vertex of G is contained in a Kr-clique. Let $\gamma_t(G)$ denote the total domination number of G. It has been conjectured that every Kr-covered graph of order n with no Kr-component satisfies $\gamma_t(G) \le \frac{2n}{r+1}$. We prove that this conjecture is true for r = 5 and 6.

2011 ◽  
Vol Vol. 13 no. 3 (Graph Theory) ◽  
Author(s):  
Michael Henning ◽  
Ernst Joubert ◽  
Justin Southey

Graph Theory International audience A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or product of a parameter of a graph and its complement. In this paper we study Nordhaus-Gaddum-type results for total domination. We examine the sum and product of γt(G1) and γt(G2) where G1 ⊕G2 = K(s,s), and γt is the total domination number. We show that the maximum value of the sum of the total domination numbers of G1 and G2 is 2s+4, with equality if and only if G1 = sK2 or G2 = sK2, while the maximum value of the product of the total domination numbers of G1 and G2 is max{8s,⌊(s+6)2/4 ⌋}.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Michael A. Henning ◽  
Viroshan Naicker

Graph Theory International audience Let G be a graph with no isolated vertex. In this paper, we study a parameter that is a relaxation of arguably the most important domination parameter, namely the total domination number, γt(G). A set S of vertices in G is a disjunctive total dominating set of G if every vertex is adjacent to a vertex of S or has at least two vertices in S at distance 2 from it. The disjunctive total domination number, γdt(G), is the minimum cardinality of such a set. We observe that γdt(G) ≤γt(G). Let G be a connected graph on n vertices with minimum degree δ. It is known [J. Graph Theory 35 (2000), 21 13;45] that if δ≥2 and n ≥11, then γt(G) ≤4n/7. Further [J. Graph Theory 46 (2004), 207 13;210] if δ≥3, then γt(G) ≤n/2. We prove that if δ≥2 and n ≥8, then γdt(G) ≤n/2 and we characterize the extremal graphs.


Author(s):  
Jonecis Dayap ◽  
Nasrin Dehgardi ◽  
Leila Asgharsharghi ◽  
Seyed Mahmoud Sheikholeslami

For any integer [Formula: see text], a minus total [Formula: see text]-dominating function is a function [Formula: see text] satisfying [Formula: see text] for every [Formula: see text], where [Formula: see text]. The minimum of the values of [Formula: see text], taken over all minus total [Formula: see text]-dominating functions [Formula: see text], is called the minus total [Formula: see text]-domination number and is denoted by [Formula: see text]. In this paper, we initiate the study of minus total [Formula: see text]-domination in graphs, and we present different sharp bounds on [Formula: see text]. In addition, we determine the minus total [Formula: see text]-domination number of some classes of graphs. Some of our results are extensions of known properties of the minus total domination number [Formula: see text].


2019 ◽  
Vol 11 (01) ◽  
pp. 1950004
Author(s):  
Michael A. Henning ◽  
Nader Jafari Rad

A subset [Formula: see text] of vertices in a hypergraph [Formula: see text] is a transversal if [Formula: see text] has a nonempty intersection with every edge of [Formula: see text]. The transversal number of [Formula: see text] is the minimum size of a transversal in [Formula: see text]. A subset [Formula: see text] of vertices in a graph [Formula: see text] with no isolated vertex, is a total dominating set if every vertex of [Formula: see text] is adjacent to a vertex of [Formula: see text]. The minimum cardinality of a total dominating set in [Formula: see text] is the total domination number of [Formula: see text]. In this paper, we obtain a new (improved) probabilistic upper bound for the transversal number of a hypergraph, and a new (improved) probabilistic upper bound for the total domination number of a graph.


Author(s):  
A. Cabrera-Martínez ◽  
F. A. Hernández-Mira

AbstractLet G be a graph of minimum degree at least two. A set $$D\subseteq V(G)$$ D ⊆ V ( G ) is said to be a double total dominating set of G if $$|N(v)\cap D|\ge 2$$ | N ( v ) ∩ D | ≥ 2 for every vertex $$v\in V(G)$$ v ∈ V ( G ) . The minimum cardinality among all double total dominating sets of G is the double total domination number of G. In this article, we continue with the study of this parameter. In particular, we provide new bounds on the double total domination number in terms of other domination parameters. Some of our results are tight bounds that improve some well-known results.


2019 ◽  
Vol 13 (07) ◽  
pp. 2050129
Author(s):  
Karnchana Charoensitthichai ◽  
Chalermpong Worawannotai

The total domination game is played on a graph [Formula: see text] by two players, named Dominator and Staller. They alternately select vertices of [Formula: see text]; each chosen vertex totally dominates its neighbors. In this game, each chosen vertex must totally dominates at least one new vertex not totally dominated before. The game ends when all vertices in [Formula: see text] are totally dominated. Dominator’s goal is to finish the game as soon as possible, and Staller’s goal is to prolong it as much as possible. The game total domination number is the number of chosen vertices when both players play optimally, denoted by [Formula: see text] when Dominator starts the game and denoted by [Formula: see text] when Staller starts the game. In this paper, we show that for any graph [Formula: see text] and a vertex [Formula: see text], where [Formula: see text] has no isolated vertex, we have [Formula: see text] and [Formula: see text]. Moreover, all such differences can be realized by some connected graphs.


2017 ◽  
Vol 9 (5/6) ◽  
pp. 541
Author(s):  
Valentina E. Balas ◽  
V. Yegnanarayanan ◽  
A. Renuka Lakshmi

Sign in / Sign up

Export Citation Format

Share Document