scholarly journals Groups with context-free Diophantine problem

2021 ◽  
Vol Volume 13, issue 1 ◽  
Author(s):  
Vladimir Yankovskiy

We find algebraic conditions on a group equivalent to the position of its Diophantine problem in the Chomsky Hierarchy. In particular, we prove that a finitely generated group has a context-free Diophantine problem if and only if it is finite.

2021 ◽  
Vol Volume 13, issue 1 ◽  
Author(s):  
Vladimir Yankovskiy

We find algebraic conditions on a group equivalent to the position of its Diophantine problem in the Chomsky Hierarchy. In particular, we prove that a finitely generated group has a context-free Diophantine problem if and only if it is finite.


2017 ◽  
Vol 27 (08) ◽  
pp. 1113-1120
Author(s):  
Susan Hermiller ◽  
Zoran Šunić

We show that there exists no left order on the free product of two nontrivial, finitely generated, left-orderable groups such that the corresponding positive cone is represented by a regular language. Since there are orders on free groups of rank at least two with positive cone languages that are context-free (in fact, 1-counter languages), our result provides a bound on the language complexity of positive cones in free products that is the best possible within the Chomsky hierarchy. It also provides a strengthening of a result by Cristóbal Rivas which states that the positive cone in a free product of nontrivial, finitely generated, left-orderable groups cannot be finitely generated as a semigroup. As another illustration of our method, we show that the language of all geodesics (with respect to the natural generating set) that represent positive elements in a graph product of groups defined by a graph of diameter at least 3 cannot be regular.


2017 ◽  
Vol 20 (2) ◽  
Author(s):  
Jack O. Button

AbstractWe show, using acylindrical hyperbolicity, that a finitely generated group splitting over


2011 ◽  
Vol 21 (04) ◽  
pp. 595-614 ◽  
Author(s):  
S. LIRIANO ◽  
S. MAJEWICZ

If G is a finitely generated group and A is an algebraic group, then RA(G) = Hom (G, A) is an algebraic variety. Define the "dimension sequence" of G over A as Pd(RA(G)) = (Nd(RA(G)), …, N0(RA(G))), where Ni(RA(G)) is the number of irreducible components of RA(G) of dimension i (0 ≤ i ≤ d) and d = Dim (RA(G)). We use this invariant in the study of groups and deduce various results. For instance, we prove the following: Theorem A.Let w be a nontrivial word in the commutator subgroup ofFn = 〈x1, …, xn〉, and letG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety andV-1 = {ρ | ρ ∈ RSL(2, ℂ)(Fn), ρ(w) = -I} ≠ ∅, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). Theorem B.Let w be a nontrivial word in the free group on{x1, …, xn}with even exponent sum on each generator and exponent sum not equal to zero on at least one generator. SupposeG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). We also show that if G = 〈x1, . ., xn, y; W = yp〉, where p ≥ 1 and W is a word in Fn = 〈x1, …, xn〉, and A = PSL(2, ℂ), then Dim (RA(G)) = Max {3n, Dim (RA(G′)) +2 } ≤ 3n + 1 for G′ = 〈x1, …, xn; W = 1〉. Another one of our results is that if G is a torus knot group with presentation 〈x, y; xp = yt〉 then Pd(RSL(2, ℂ)(G))≠Pd(RPSL(2, ℂ)(G)).


1971 ◽  
Vol 5 (1) ◽  
pp. 131-136 ◽  
Author(s):  
Gilbert Baumslag

We exhibit a 3-generator metabelian group which is not finitely related but has a trivial multiplicator.1. The purpose of this note is to establish the exitense of a finitely generated group which is not finitely related, but whose multiplecator is finitely generated. This settles negatively a question whichb has been open for a few years (it was first brought to my attention by Michel Kervaire and Joan Landman Dyer in 1964, but I believe it is somewhat older). The group is given in the follwing theorem.


Author(s):  
Jérémie Brieussel ◽  
Thibault Godin ◽  
Bijan Mohammadi

The growth of a finitely generated group is an important geometric invariant which has been studied for decades. It can be either polynomial, for a well-understood class of groups, or exponential, for most groups studied by geometers, or intermediate, that is between polynomial and exponential. Despite recent spectacular progresses, the class of groups with intermediate growth remains largely mysterious. Many examples of such groups are constructed using Mealy automata. The aim of this paper is to give an algorithmic procedure to study the growth of such automaton groups, and more precisely to provide numerical upper bounds on their exponents. Our functions retrieve known optimal bounds on the famous first Grigorchuk group. They also improve known upper bounds on other automaton groups and permitted us to discover several new examples of automaton groups of intermediate growth. All the algorithms described are implemented in GAP, a language dedicated to computational group theory.


2009 ◽  
Vol 30 (6) ◽  
pp. 1803-1816 ◽  
Author(s):  
C. R. E. RAJA

AbstractLet K be a compact metrizable group and Γ be a finitely generated group of commuting automorphisms of K. We show that ergodicity of Γ implies Γ contains ergodic automorphisms if center of the action, Z(Γ)={α∈Aut(K)∣α commutes with elements of Γ} has descending chain condition. To explain that the condition on the center of the action is not restrictive, we discuss certain abelian groups which, in particular, provide new proofs to the theorems of Berend [Ergodic semigroups of epimorphisms. Trans. Amer. Math. Soc.289(1) (1985), 393–407] and Schmidt [Automorphisms of compact abelian groups and affine varieties. Proc. London Math. Soc. (3) 61 (1990), 480–496].


2017 ◽  
Vol 20 (4) ◽  
Author(s):  
Khadijeh Alibabaei

AbstractWe show that the wreath product of a finitely generated abelian group with a polycyclic group is a LERF group. This theorem yields as a corollary that finitely generated free metabelian groups are LERF, a result due to Coulbois. We also show that a free solvable group of class 3 and rank at least 2 does not contain a strictly ascending HNN-extension of a finitely generated group. Since such groups are known not to be LERF, this settles, in the negative, a question of J. O. Button.


Author(s):  
Patrizia Longobardi ◽  
Mercede Maj ◽  
Akbar Rhemtulla ◽  
Howard Smith

AbstractGroups in which every infinite set of subgroups contains a pair that permute were studied by M. Curzio, J. Lennox, A. Rhemtulla and J. Wiegold. The question whether periodic groups in this class were locally finite was left open. Here we show that if the generators of such a group G are periodic then G is locally finite. This enables us to get the following characterisation. A finitely generated group G is centre-by-finite if and only if every infinite set of subgroups of G contains a pair that permute.


Sign in / Sign up

Export Citation Format

Share Document