scholarly journals Pumping lemmas for weighted automata

2021 ◽  
Vol Volume 17, Issue 3 ◽  
Author(s):  
Agnishom Chattopadhyay ◽  
Filip Mazowiecki ◽  
Anca Muscholl ◽  
Cristian Riveros

We present pumping lemmas for five classes of functions definable by fragments of weighted automata over the min-plus semiring, the max-plus semiring and the semiring of natural numbers. As a corollary we show that the hierarchy of functions definable by unambiguous, finitely-ambiguous, polynomially-ambiguous weighted automata, and the full class of weighted automata is strict for the min-plus and max-plus semirings.

Author(s):  
Gerco van Heerdt ◽  
Clemens Kupke ◽  
Jurriaan Rot ◽  
Alexandra Silva

AbstractIn this paper, we study active learning algorithms for weighted automata over a semiring. We show that a variant of Angluin’s seminal $$\mathtt {L}^{\!\star }$$ L ⋆ algorithm works when the semiring is a principal ideal domain, but not for general semirings such as the natural numbers.


ASHA Leader ◽  
2015 ◽  
Vol 20 (1) ◽  
pp. 36-39 ◽  
Author(s):  
Carol Dudding
Keyword(s):  

Author(s):  
Tyron Goldschmidt

This chapter considers Plantinga’s argument from numbers for the existence of God. Plantinga sees divine psychologism as having advantages over both human psychologism and Platonism. The chapter begins with Plantinga’s description of the argument, including the relation of numbers to any divine attribute. It then argues that human psychologism can be ruled out completely. However, what rules it out might rule out divine psychologism too. It also argues that the main problem with Platonism might also be a problem with divine psychologism. However, it will, at the least, be less of a problem. In any case, there are alternative, possibly viable views about the nature of numbers that have not been touched by Plantinga’s argument. In addition, the chapter touches on the argument from properties, and its relation to the argument from numbers.


Author(s):  
Øystein Linnebo

How are the natural numbers individuated? That is, what is our most basic way of singling out a natural number for reference in language or in thought? According to Frege and many of his followers, the natural numbers are cardinal numbers, individuated by the cardinalities of the collections that they number. Another answer regards the natural numbers as ordinal numbers, individuated by their positions in the natural number sequence. Some reasons to favor the second answer are presented. This answer is therefore developed in more detail, involving a form of abstraction on numerals. Based on this answer, a justification for the axioms of Dedekind–Peano arithmetic is developed.


2021 ◽  
Vol 31 (1) ◽  
pp. 51-60
Author(s):  
Arsen L. Yakymiv

Abstract Dedicated to the memory of Alexander Ivanovich Pavlov. We consider the set of n-permutations with cycle lengths belonging to some fixed set A of natural numbers (so-called A-permutations). Let random permutation τ n be uniformly distributed on this set. For some class of sets A we find the asymptotics with remainder term for moments of total cycle number of τ n .


Author(s):  
Vakeel A. Khan ◽  
Umme Tuba ◽  
SK. Ashadul Rahama ◽  
Ayaz Ahmad

In 1990, Diamond [16] primarily established the base of fuzzy star–shaped sets, an extension of fuzzy sets and numerous of its properties. In this paper, we aim to generalize the convergence induced by an ideal defined on natural numbers ℕ , introduce new sequence spaces of fuzzy star–shaped numbers in ℝ n and examine various algebraic and topological properties of the new corresponding spaces as well. In support of our results, we provide several examples of these new resulting sequences.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
M. Basher

AbstractA simple graph $$G=(V,E)$$ G = ( V , E ) is said to be k-Zumkeller graph if there is an injective function f from the vertices of G to the natural numbers N such that when each edge $$xy\in E$$ x y ∈ E is assigned the label f(x)f(y), the resulting edge labels are k distinct Zumkeller numbers. In this paper, we show that the super subdivision of path, cycle, comb, ladder, crown, circular ladder, planar grid and prism are k-Zumkeller graphs.


2020 ◽  
Vol 53 (4) ◽  
pp. 187-192
Author(s):  
Jan Komenda ◽  
Aiwen Lai ◽  
José Godoy Soto ◽  
Sébastien Lahaye ◽  
Jean-louis Boimond

Sign in / Sign up

Export Citation Format

Share Document