scholarly journals Analisis Tingkat Pembelian Konsumen dengan Algoritma Apriori

Author(s):  
Ismasari Ismasari ◽  
Maulida Ramadhan ◽  
Wahyu Hadikristanto

Saat ini data mining telah diimplementasikan ke berbagai bidang salah satu diantaranya adalah pada bidang bisnis atau perdagangan yang dapat membantu para pebisnis dalam kebijakan pengambilan keputusan terhadap apa yang berhubungan dengan persediaan barang. Misalnya pentingnya sistem persediaan barang di suatu Toko dan jenis barang apa yang menjadi prioritas utama yang harus di stok untuk mengantisipasi kekosongan barang. Karena minimnya stok barang dapat berpengaruh pada pelayanan konsumen dan pendapatan Toko. Metode yang sering digunakan untuk menganalisa pola pembelian pelanggan adalah metode asosiasi atau association rule mining. Association rule mining adalah suatu metode untuk mencari pola hubungan antar satu atau lebih itemset yang ada dalam suatu dataset. Algoritma yang paling popular dalam mencari pola hubungan item set adalah algoritma apriori atau sering disebut dengan market basket analysis. Proses yang dilakukan dalam penelitian ini menggunakan tools Rapid Miner untuk mengolah data dengan algoritma apriori, dari pengujian yang dilakukan dengan parameter yang telah ditentukan yaitu minimum support 70% dan minimum confidence 80% menghasilkan 4 aturan asosiasi dengan nilai confidance 100% yaitu kombinasi item aqua 600ml-fulloblasto caramel cruncy chocolat - yupi 500 semua rasa - beng beng 25g. Dengan pencarian pola menggunakan algoritma apriori ini diharapkan informasi yang dihasilkan dapat meningkatakan strategi penjualan selanjutnya    

2020 ◽  
Vol 27 (1) ◽  
Author(s):  
AA Izang ◽  
SO Kuyoro ◽  
OD Alao ◽  
RU Okoro ◽  
OA Adesegun

Association rule mining (ARM) is an aspect of data mining that has revolutionized the area of predictive modelling paving way for data mining technique to become the recommended method for business owners to evaluate organizational performance. Market basket analysis (MBA), a useful modeling technique in data mining, is often used to analyze customer buying pattern. Choosing the right ARM algorithm to use in MBA is somewhat difficult, as most algorithms performance is determined by characteristics such as amount of data used, application domain, time variation, and customer’s preferences. Hence this study examines four ARM algorithm used in MBA systems for improved business Decisions. One million, one hundered and twele thousand (1,112,000) transactional data were extracted from Babcock University Superstore. The dataset was induced with Frequent Pattern Growth, Apiori, Association Outliers and Supervised Association Rule ARM algorithms. The outputs were compared using minimum support threshold, confidence level and execution time as metrics. The result showed that The FP Growth has minimum support threshold of 0.011 and confidence level of 0.013, Apriori 0.019 and 0.022, Association outliers 0.026 and 0.294 while Supervised Association Rule has 0.032 and 0.212 respectively. The FP Growth and Apirori ARM algorithms performed better than Association Outliers and Supervised Association Rule when the minimum support and confidence threshold were both set to 0.1. The study concluded by recommending a hybrid ARM algorithm to be used for building MBA Applications. The outcome of this study when adopted by business ventures will lead to improved business decisions thereby helping to achieve customer retention. Keywords: Association rule mining, Business ventures, Data mining, Market basket analysis, Transactional data.


2019 ◽  
Vol 8 (1) ◽  
pp. 20-24
Author(s):  
D. Selvamani ◽  
V. Selvi

Many modern intrusion detection systems are based on data mining and database-centric architecture, where a number of data mining techniques have been found. Among the most popular techniques, association rule mining is one of the important topics in data mining research. This approach determines interesting relationships between large sets of data items. This technique was initially applied to the so-called market basket analysis, which aims at finding regularities in shopping behaviour of customers of supermarkets. In contrast to dataset for market basket analysis, which takes usually hundreds of attributes, network audit databases face tens of attributes. So the typical Apriori algorithm of association rule mining, which needs so many database scans, can be improved, dealing with such characteristics of transaction database. In this paper, a literature survey on the Association Rule Mining has carried out.


2020 ◽  
Vol 7 (2) ◽  
pp. 135-148
Author(s):  
Didi Supriyadi

Tingkat persaingan dan kompleksitas permasalahan penjualan pada perusahaan retail, menuntut setiap perusahaan retail untuk mampu berkompetisi dengan perusahaan lain. Salah satu yang dapat dilakukan adalah melalui pengambilan keputusan terkait penjualan yang lebih tepat dan efektif. Besarnya data transaksinonal penjualan perusahaan retail dapat dilakukan ekstraksi informasi yang bermanfaat. Metode yang dapat digunakan untuk menggali informasi adalah melalui penerapan association rule mining. Association Rule Mining merupakan suatu metode data mining yang berfokus pada pola transaksi dengan cara mengekstraksi asosiasi atau hubungan suatu kejadian. Keranjang belanja yang terdapat pada perusahaan retail yang terkomputerisasi merupakan cara terbaik untuk memberikan dukungan rekomendasi keputusan secara ilmiah dengan cara menentukan hubungan antara barang yang dibeli secara bersamaan dalam setiap transaksi. Algoritma FP-growth digunakan untuk menentukan himpunan dataset yang paling sering muncul (frequent itemset) pada sekeompok data. Penelitian ini menghasilkan nilai minimum support 0,1% dan nilai minimum confidence 60% jumlah rule yang dihasilkan berjumlah 116457, nilai minimum confidence 70% jumlah rule yang dihasilkan berjumlah 84086, dan nilai minimum confidence 80% jumlah rule yang dihasilkan berjumlah 48623 dari data yang diolah sebanyak 22191. Hasil rule ini dapat digunakan untuk strategi pemasaran produk. Nilai minimum support 0,1% dimana semakin besar nilai minimum confidence maka menghasilkan rule yang semakin sedikit.


Author(s):  
Mohamad Fauzy ◽  
Kemas Rahmat Saleh W ◽  
Ibnu Asror

[Id] Prakiraan cuaca saat ini telah menjadi satu hal yang dibutuhkan bagi banyak orang di dunia. Dalam memprediksi hujan pengolahan data cuaca merupakan hal yang penting. Namun permasalahannya, data cuaca yang semakin hari semakin bertambah menyebabkan penumpukan data sehingga pengolahan data tersebut perlu penanganan lebih lanjut. Oleh karena itu pemanfaatan data mining digunakan untuk menyelesaikan masalah ini. Association rule mining adalah salah satu metode data mining yang dapat mengidentifikasi hubungan kesamaan antar item. Penelitian ini dilakukan dengan tiga tahapan utama yaitu : 1) melakukan analisa pola frekuensi tinggi menggunakan algortima apriori; 2) pembentukan aturan asosiasi (association rule); 3) uji kekuatan rule yang terbentuk dengan menghitung lift ratio pada masing-masing rule. Dataset yang digunakan adalah data klimatologi yang diambil dari BMKG stasiun geofisika kelas 1 Bandung. Hasil akhir dari Penelitian ini berupa aturan-aturan asosiasi (association rules) dimana aturan-aturan ini dapat dijadikan sebagai acuan dalam memprediksi cuaca hujan atau tidak hujan untuk satu hari kedepan. Kata kunci : Data mining, association rule, apriori, prediksi hujan [En] Weather forecast today has become a necessary thing for many people in the world. In predicting rain weather data processing is essential. But the problem, weather data that is increasingly growing cause the accumulation of data so that the data processing needs further treatment. Therefore, the use of data mining is used to solve this problem. Association rule mining is one of data mining methods that can identify similarity relationships between items. This research is performed by three main stages, namely: 1) to analyze high frequency patterns using algorithms priori; 2) the establishment of an association rule (association rule); 3) test the strength of the rule which is formed by calculating the ratio elevator on each rule. The dataset used is the climatological data taken from BMKG station 1st class geophysical Bandung. The end result of this research in the form of rules of association (association rules) in which these rules can be used as a reference in predicting the weather is rain or not rain for the next day. Keywords : data mining, association rule, apriori, rain forecast


Author(s):  
Anurag Sinha

Buyer practices have changed as individuals are figuring out how to live with the new truth of COVID-19. Take-out and conveyance orders have expanded, and our customer has added new items to their menu because of new client inclinations. With every one of the continuous changes, the customer had numerous unanswered inquiries, for example, Smartbridge has broad involvement with café innovation development Café TECHNOLOGY CAPABILITIES :Are the most famous items as yet unchanged after COVID? :Which are the most sold item blends now? :What is the acknowledgment of new things? :What are clients purchasing alongside new things? :How have liquor deals changed? The customer previously had reports that followed item deals and operational measurements, notwithstanding, there was a need to get a more profound knowledge into item examination. The customer expected to recognize what items and introductions were being sold all the more frequently, measure the acknowledgment of new items, and figure out what items clients buy together to improve advertising efforts, advancements, and deals. he E-business industry is filling immensely in the Indian market. The modest 4G web bundles in India clearly gives a push to these ventures. Thus, as Covid19 first hit in Quite a while, individuals got terrified to go out from their homes in light of the fact that, in their mind, it's a dread of Covid. They even wonder whether or not to go out to purchase fundamental (FMCG) products. Frenzy purchasing additionally has seen and to stay away from this dread of COVID-19, individuals are offering inclinations to the E-Commerce destinations to purchase fundamental products and a few clients are new which joined to purchase fundamental merchandise during this Pandemic Lockdown period. Numerous clients are moving their purchasing conduct from disconnected retail locations to online stores. This paper examines the customer buying pattern during lockdown.


Sign in / Sign up

Export Citation Format

Share Document