Techno-economic assessment of performance-enhanced parabolic trough receiver in concentrated solar power plants

Author(s):  
Qiliang Wang ◽  
Gang Pei ◽  
Hongxing Yang
2021 ◽  
Vol 1204 (1) ◽  
pp. 012005
Author(s):  
Intissar Achouri ◽  
Mouhamed Elbar Soudani ◽  
Tlili Salah

Abstract Concentrated solar power plants (CSP) contribute to global production (at present) with a capacity of 400 MW, and by 2020 they will reach approximately 20 GW, then nearly 800 GW by 2050, This will prevent the emission of 32 million tons of CO2 annually in 2020, and rise to 1.2 billion tons in 2050, according to the International Greenpeace “Solar Thermal Electricity” 2016 report. Among all the concentrated solar power (CSP) technology available to date, Parabolic Trough Collector (PTC) is the most promising, cost-effective, and efficient solution to generating electrical power, as PTC plants contribute in terms of global production capacity by 73.58% of the overall capacity of concentrated solar power plants (CSP). PTC stations in the production of electricity depend on the generation of hot and pressurized steam that rotates the turbines and to increase the effectiveness of PTC in the production of steam, we use in this study nanofluids by adding copper nanomaterials in different proportions to improve the Thermal efficiency of PTC. We also studied the effect of the width of the PTC slot on the fluid temperature. And from it on the amount of steam produced. The results of the study showed that the Thermal efficiency increases with the increase in the ratio of copper nanomaterials in the water, as the temperature of outlet water reaches 98°C, for the ratio of nanomaterials, 20%, in order to water flow 0.01 Kg/s and display the aperture 3.5 m.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Andrzej Bielecki ◽  
Sebastian Ernst ◽  
Wioletta Skrodzka ◽  
Igor Wojnicki

Concentrated solar power plants belong to the category of clean sources of renewable energy. The paper discusses the possibilities for the use of molten salts as storage in modern CSP plants. Besides increasing efficiency, it may also shift their area of application: thanks to increased controllability, they may now be used not only to cover baseload but also as more agile, dispatchable generators. Both technological and economic aspects are presented, with focus on the European energy sector and EU legislation. General characteristics for CSP plants, especially with molten salt storage, are discussed. Perspectives for their development, first of all in economic aspects, are considered.


Sign in / Sign up

Export Citation Format

Share Document