Quantum dynamics of a f-deformed cavity-field beyond the rotating wave approximation

2021 ◽  
Vol 21 (1) ◽  
2019 ◽  
Vol 33 (13) ◽  
pp. 1950126
Author(s):  
Mohsen Daeimohammad

The aim of the present study is to investigate the effect of the counter-rotating terms on the quantum dynamics of a harmonic oscillator in the presence of a deformed bath. We first obtain the Langevin equation of motion for damped oscillator with and without the rotating-wave approximation (RWA). Then, we study the effect of the counter-rotating terms on the diffusion coefficients. Then, we obtain the equation of motion for the harmonic oscillator correlation function with and without the RWA. Finally, we investigate the influence of the counter-rotating terms on the oscillator correlation function.


2010 ◽  
Vol 19 (11) ◽  
pp. 110303 ◽  
Author(s):  
Guo-Dong Kang ◽  
Mao-Fa Fang ◽  
Xi-Cheng Ouyang ◽  
Xiao-Juan Deng

2014 ◽  
Vol 23 (02) ◽  
pp. 1450019 ◽  
Author(s):  
Y. A. Sharaby ◽  
S. Lynch ◽  
A. Joshi ◽  
S. S. Hassan

In this paper, we investigate the nonlinear dynamical behavior of dispersive optical bistability (OB) for a homogeneously broadened two-level atomic medium interacting with a single mode of the ring cavity without invoking the rotating wave approximation (RWA). The periodic oscillations (self-pulsing) and chaos of the unstable state of the OB curve is affected by the counter rotating terms through the appearance of spikes during its periods. Further, the bifurcation with atomic detuning, within and outside the RWA, shows that the OB system can be converted from a chaotic system to self-pulsing system and vice-versa.


Sign in / Sign up

Export Citation Format

Share Document